
Version V1.0 Copyright @ Estun Codroid 1

Version V1.0 Copyright @ Estun Codroid 2

Contents
Chapter 1 Preface .. 11

1.1 Safety..11

1.2 Nameplate .. 11

1.3 How to Use This Manual .. 11

1.4 Copyright and Trademark... 12

1.5 Disclaimer of the Manual ...12

1.6 Common Terms .. 12

1.6.1 Robot ..12

1.6.2 Maximum workspace.. 12

1.6.3 Precision.. 12

1.6.4 Repeatability accuracy .. 12

1.6.5 Trajectory accuracy .. 13

1.6.6 Trajectory repetition accuracy ..13

1.6.7 Tool Center Point (TCP) ...13

1.6.8 Payload.. 13

1.6.9 Protective stop.. 13

1.6.10 Singularity (Singular Point) .. 13

1.7 Revision Record ...13

Chapter 2 Safety Information...14

2.1 Validity and Responsibility ...14

2.2 The warning symbols appointed in this manual .. 14

2.3 Safety Precautions ..15

2.4 Safety Requirements ... 16

2.5 Safety Disclaimer .. 17

2.6 Limitation of Liability ... 17

2.7 Stop category.. 17

2.8 Risk assessment ...18

2.9 Safety function ...18

2.10 Emergency stop recovery ..19

2.11 Forced drive without power ... 19

2.12 Stopping time and stopping distance...19

2.13 Storage, usage and transportation conditions ...20

2.14 Control cabinet and body identification...20

Chapter 3 Quick Start ... 23

3.1 Confirmation of packing contents .. 23

3.2 Robot installation... 23

3.2.1 Transportation... 24

Version V1.0 Copyright @ Estun Codroid 3

3.2.2 Handling..24

3.2.3 Installation...27

3.2.4 Operation position layout..29

3.3 Start using...30

3.3.1 Power on and start up.. 30

3.3.2 Write a program... 32

3.3.3 Power off ...34

Chapter 4 Mechanical Hardware and Installation... 35

4.1 Robot composition.. 35

4.2 Work Space.. 35

4.3 Load curve .. 37

4.4 Flange interface...40

4.5 Installation interface .. 44

4.6 Robot Specification ..46

4.7 Control cabinet ..47

4.8 Handle operator ... 48

Chapter 5 Electrical Hardware and Installation.. 50

5.1 End Interface ..50

5.1.1 Pro terminal interface..50

5.1.2 Meaning of the indicator light strip ..50

5.1.3 M8 Interface ... 50

5.2 Screen information ...51

5.3 Control cabinet interface... 53

5.3.1 Overview of Electrical Interfaces ..53

5.3.2 Safety Interface ..54

5.3.3 General Input and Output Overview..55

5.3.4 External power connection method for digital input ... 56

5.3.5 Internal power connection method for digital input .. 56

5.3.6 External power connection method for digital output .. 57

5.3.7 Internal power connection method for digital output ...58

5.3.8 Simulation input/output interface ...59

5.3.9 CAN/485/IO interface... 61

5.3.10 LAN Network Port ..62

5.3.11 Communication input ...63

Chapter 6 Maintenance and Warranty ..64

6.1 Notes .. 64

6.2 Daily inspection items ...64

6.2.1 General cleaning ...64

6.2.2 Control box...65

Version V1.0 Copyright @ Estun Codroid 4

6.2.3 Robot ..66

6.3 System update ...66

6.3.1 Update steps ..66

6.4 Common Mistakes ... 68

6.4.1 Singularity/Inverse solution failure .. 68

6.4.2 Trigger collision detection...69

6.4.3 Location/Speed Exceedance ..70

6.4.4 Joint tracking error is too large..70

6.4.5 Alarm cleared...70

6.5 Fault code description.. 71

6.6 Disclaimer..71

6.7 Abandoned robots ...72

Chapter 7 Overview of the Teaching Pendant Interface ...73

7.1 Login interface ...73

7.2 Home page...73

7.2.1 Switch tab area ..74

7.2.2 Account Settings Button.. 74

7.2.3 Error message and real-time log window button ... 74

7.2.4 Full-screen display button...75

7.3 Project Tab..75

7.3.1 Quick operation area .. 76

7.3.2 Graphics Programming Area .. 77

7.3.3 Pose Zone... 83

7.3.4 Parameter Area ... 85

7.3.5 3D Simulation.. 86

7.3.6 Register ..88

7.3.7 I/O..89

7.3.8 Variable Management .. 89

7.3.9 Project Management Area.. 91

7.3.10 Speed ratio adjustment area ..93

7.4 Settings tab...93

7.4.1 Basic ..93

7.4.2 Tools, load, coordinate system ...95

7.4.3 Others...96

7.4.4 Sports ... 98

7.4.5 Register communication..100

7.4.6 IO...101

7.4.7 MODBUS Master .. 102

7.4.8 Panel IO...104

Version V1.0 Copyright @ Estun Codroid 5

7.5 Log tab .. 104

7.6 Management tab ..105

Chapter 8 Introduction to Variables ..107

8.1 Variable Overview..107

8.2 Variable ... 108

8.2.1 POSE ...108

8.2.2 Basic Data Types ...109

8.2.3 SPEED...109

8.2.4 ACC...110

8.2.5 ZONE..110

8.2.6 CLOCK..110

8.2.7 Socket .. 110

8.2.8 INTERRUPT... 111

8.2.9 LsScale ... 111

8.2.10 LsThresh..111

8.2.11 VibrationSuppression... 111

8.2.12 Matrix2 .. 112

8.2.13 Matrix3 .. 112

8.2.14 Matrix4 .. 112

8.2.15 Matrix9 .. 112

Chapter 9 Calibration... 112

9.1 Joint coordinate system... 112

9.2 World coordinate system.. 113

9.3 Coordinate System and Calibration...114

9.3.1 Three-point calibration method... 115

9.3.2 Use the user coordinate system..117

9.4 Tools and Calibration..118

9.4.1 Four-direction calibration method.. 119

9.4.2 One-point calibration method (attitude) ...121

9.4.3 Use the tool coordinate system.. 123

Chapter 10 Instruction Introduction..125

10.1 Displacement Instructions ...125

10.1.1 MovJ...125

10.1.2 MovL.. 125

10.1.3 MovC... 126

10.1.4 MovCircle ... 127

10.1.5 MovJRel ...128

10.1.6 MovLRel .. 129

10.1.7 MovLSearch...130

Version V1.0 Copyright @ Estun Codroid 6

10.1.8 AddDo... 131

10.1.9 MovTraj ... 132

10.2 Logical Instructions... 132

10.2.1 GoTo.. 132

10.2.2 If ...132

10.2.3 ElseIf ...133

10.2.4 Otherwise ... 134

10.2.5 While ..134

10.2.6... =... ..135

10.2.7 RETURN...135

10.2.8 CALL...136

10.2.9 RUN..136

10.2.10 KILL ...136

10.2.11 Labeling..136

10.3 Flow Control Instructions .. 137

10.3.1 Wait .. 137

10.3.2 WaitFinish ...137

10.3.3 WaitCondition...137

10.4 IO Instructions ...138

10.4.1 SetDO.. 138

10.4.2 SetAO.. 139

10.4.3 WaitDI ..139

10.4.4 WaitDI8421 .. 140

10.4.5 WaitAI ..141

10.4.6 GetDI8421 .. 141

10.4.7 GetDO8421..142

10.4.8 SetDO8421...142

10.4.9 GetDO... 143

10.4.10 GetDI ... 143

10.4.11 GetAO... 143

10.4.12 GetAI ..144

10.5 Set instructions ... 144

10.5.1 SetTool .. 144

10.5.2 SetCoord...145

10.5.3 SetPayload... 145

10.5.4 Stop..145

10.5.5 EnaVibraSuppr..145

10.5.6 DisVibraSuppr...145

10.5.7 ClsDectLevel .. 145

Version V1.0 Copyright @ Estun Codroid 7

10.6 Position Operation Instructions.. 146

10.6.1 GetCurAPos... 146

10.6.2 GetCurCPos... 146

10.6.3 APosToCPos.. 146

10.6.4 CPosToAPos.. 147

10.6.5 CPosToCPos.. 148

10.6.6 ToolOffset ...148

10.6.7 UserOffset .. 149

10.6.8 CposOffset ... 149

10.6.9 GetAxis .. 150

10.6.10 GetCartesian... 150

10.6.11 Position Inverse ..151

10.6.12 PointsDistance..151

10.6.13 InterpolationCpos... 152

10.6.14 TransformPlane..152

10.6.15 GetTrajStartPoint ... 153

10.6.16 GetTrajEndPoint ...154

10.7 Bitwise Operation Instructions.. 154

10.7.1 BitAnd..154

10.7.2 BitNeg..154

10.7.3 BitOr ...155

10.7.4 BitLSH.. 155

10.7.5 BitRSH..156

10.8 Clock Instruction.. 156

10.8.1 CLKStart .. 156

10.8.2 CLKStop.. 156

10.8.3 CLKReset ...157

10.9 Socket Command.. 157

10.9.1 SocketCreate ... 157

10.9.2 SocketClose... 158

10.9.3 SocketSendStr ...158

10.9.4 SocketSendReal ..158

10.9.5 SocketSendInt ...159

10.9.6 SocketReadReal ..160

10.9.7 SocketReadInt ...161

10.9.8 SocketReadStr ...161

10.10 Interrupt Instruction... 162

10.10.1 IConnect ... 162

10.10.2 IDelete ...162

Version V1.0 Copyright @ Estun Codroid 8

10.10.3 ITimer .. 163

10.10.4 ICondition.. 163

10.11 Modbus Commands...164

10.11.1 GetModConState ...164

10.11.2 ReadSingleCoilReg..164

10.11.3 ReadDiscretelnputReg... 165

10.11.4 ReadSingleHoldReg..166

10.11.5 ReadInputReg...166

10.11.6 WriteSingleCoilReg...167

10.11.7 WriteSingleHoldReg...168

10.12 Array Instructions .. 168

10.12.1 SetMatrix2 ..168

10.12.2 SetMatrix3 ..169

10.12.3 SetMatrix4 ..170

10.12.4 SetMatrix9 ..171

10.12.5 GetMatrix2 ...173

10.12.6 GetMatrix3 ...173

10.12.7 GetMatrix4 ...174

10.12.8 GetMatrix9 ...175

10.13 String instructions ... 175

10.13.1 APosToStr .. 175

10.13.2 CPosToStr .. 176

10.13.3 DAPosToStr ... 177

10.13.4 DCPosToStr ... 177

10.13.5 TranStrTolntArray ..178

10.13.6 TranStrToRealArray ...179

10.13.7 TranStrToApos... 179

10.13.8 TranStrToCpos..180

10.13.9 TranStrToDApos.. 181

10.13.10 TranStrToDCpos..182

10.13.11 IntArrayToString .. 183

10.13.12 RealArrayToString ...183

10.13.13 BoolArrayToString.. 184

10.14 RS485 Instructions.. 184

10.14.1 RS485Init .. 184

10.14.2 RS485Read.. 185

10.14.3 RS485Write ..186

10.14.4 RS485FlushReadBuffer ...186

10.15 Mathematical operation functions .. 186

Version V1.0 Copyright @ Estun Codroid 9

10.15.1 sin ... 187

10.15.2 cos.. 187

10.15.3 tan.. 187

10.15.4 asin ...187

10.15.5 acos ..187

10.15.6 atan.. 187

10.15.7 atan2..188

10.15.8 sinh...188

10.15.9 cosh..188

10.15.10 tanh... 188

10.15.11 log..188

10.15.12 log10... 188

10.15.13 sqrt ...189

10.15.14 exp... 189

10.15.15 pow..189

10.15.16 deg...189

10.15.17 rad ..189

10.15.18 fmod..189

10.15.19 floor ...190

10.15.20 random...190

10.16 String Functions ...190

10.16.1 byte ..190

10.16.2 char .. 190

10.16.3 find2...190

10.16.4 findEnd..190

10.16.5 format... 191

10.16.6 getAt..191

10.16.7 gsub...192

10.16.8 len...192

10.16.9 left .. 192

10.16.10 lower... 192

10.16.11 right ...192

10.16.12 reverse ..193

10.16.13 strcmp...193

10.16.14 trimLeft ...193

10.16.15 trimRight ..193

10.16.16 upper .. 193

10.16.17 IToStr ...193

10.16.18 RToStr ... 194

Version V1.0 Copyright @ Estun Codroid 10

10.16.19 StrToI ...194

10.16.20 StrToR... 194

10.16.21 Append...194

Appendix to Chapter 1 .. 195

11.1 Error Codes ..195

11.2 User Levels and Permissions .. 199

11.3 Declaration...201

Chapter 12 Spare Parts List .. 203

Chapter 13 Contact Information ...204

Version V1.0 Copyright @ Estun Codroid 11

Chapter 1 Preface

1.1 Safety

Thank you for purchasing and using our company's robot, it only passed two functional safety

certifications of EN ISO 13840-1:2023:

1. the performance level of the emergency stop circuit for the above model of robot is Pl d.

2. the nennrmance level of the protective stop circuit for the above model of robot is maximum PL

d.

1.2 Nameplate

You can find information such as the model of the robot on its arm.

Figure 1-1 Robot Arm Nameplate

You can find information such as the model of the control cabinet on the control cabinet itself.

Figure 1-2 Control Cabinet Nameplate

1.3 How to Use This Manual

This manual describes the hardware composition of the Codroid robot and the operation of its

teaching control system, which is helpful for users to understand and master the functions,

technical specifications, installation and usage of the Codroid robot.

This manual is applicable for customers, sales engineers, installation and commissioning engineers,

Version V1.0 Copyright @ Estun Codroid 12

technical support personnel, etc.

This manual contains methods on how to protect users and prevent machine damage. Users need

to read all relevant descriptions in the manual and be fully familiar with the safety precautions.

In this manual, we have tried to describe various situations. However, due to the vast number of

possibilities, it is impossible to record all the situations that should not be done or cannot be done.

1.4 Copyright and Trademark

Estun CoDroid, CoDroid, CoDroid EIP, CoBrain, CoDrive, CoSense, CoSafe, CoTool are registered

trademarks of Estun CoDroid. All rights reserved @ Nanjing Estun CoDroid Technology Co., Ltd.

Without the written permission of the Company, no unit or individual may excerpt, copy in part or

in whole, or disseminate the content of this document in any form.

1.5 Disclaimer of the Manual

Before using this product, please read this user manual and the relevant technical documents

published online in detail and understand the information. Make sure to use the robot only after

fully understanding the robot and related knowledge. We recommend that you use this manual

under the guidance of professionals. All safety information contained in this manual shall not be

regarded as a guarantee by Codroid. Even if you follow this manual and related instructions, harm

or loss may still occur during use.

1.6 Common Terms

1.6.1 Robot

Fixed or mobile automatic machinery that can be automatically controlled, repeatedly

programmed, multi-purpose, and programmed for three or more axes, used in industrial

automation.

1.6.2 Maximum workspace

The space that the robot's moving parts can sweep through, plus the space that can be swept by

the end effector and the workpiece during their movements.

1.6.3 Precision

The deviation of position and attitude between the average value of the commanded distance and

the actual distance.

1.6.4 Repeatability accuracy

Version V1.0 Copyright @ Estun Codroid 13

The consistency of the actual distance reached after repeating the movement in the same direction

for the same instruction distance n times.

1.6.5 Trajectory accuracy

The maximum trajectory deviation along the obtained trajectory in terms of position and

orientation.

1.6.6 Trajectory repetition accuracy

The consistency of the actual trajectory when a robot repeats the same instruction trajectory n

times.

1.6.7 Tool Center Point (TCP)

Points set for a certain purpose with reference to the mechanical interface coordinate system. (Ref.

GB/T 12643-2013, Definition 4.9)

1.6.8 Payload

It refers to all the loads attached to the robot flange excluding the weight of the tool.

1.6.9 Protective stop

A form of operation interruption that allows for the orderly termination of a process for safety

reasons while maintaining the program logic to enable a restart.

1.6.10 Singularity (Singular Point)

The situation where two or more axes of a robot are collinear, resulting in uncertainty in the robot's

motion and speed.

1.7 Revision Record

Material

Number

Version Release Data Description

1210002200 V1.0 20250401 Initial version

Version V1.0 Copyright @ Estun Codroid 14

Chapter 2 Safety Information

2.1 Validity and Responsibility

The information in this manual does not cover the design, installation and operation of a

complete robot application, nor does it include all the peripheral equipment that may

affect the safety of this complete system. The design and installation of the complete

system must comply with the safety requirements established in the standards and

regulations of the country where the robot is installed.

Estun Codroid integrators are responsible for ensuring compliance with applicable laws and

regulations of the relevant countries and ensuring that there are no significant hazards in

the complete robot application. This includes but is not limited to the following:

Conduct a risk assessment of the entire robot system.

Connect other mechanical and additional safety devices defined in the risk assessment

together.

Make appropriate security settings in the software.

Ensure that users cannot modify any security measures.

Confirm that the design and installation of the entire robot system are accurate and error-

free.

Good understanding on this instruction

Mark the relevant logos and contact information of the integrator on the robot.

Collect all the documents in the technical files; including the risk assessment and this

manual.

2.2 The warning symbols appointed in this manual

The following safety warning signs may appear in this manual. Their meanings are as

follows:

Warning

This sign indicates a potentially dangerous electrical situation. If not
avoided, it may cause death or serious injury to personnel or severe
damage to equipment.

Warning

This sign indicates a potentially dangerous situation. If not avoided, it
may cause death or serious injury to people.

Version V1.0 Copyright @ Estun Codroid 15

Warning

This sign indicates a potentially dangerous electrical situation. If not
avoided, it may cause personal injury or severe damage to
equipment.

Warning

This sign indicates a potentially dangerous situation. If not avoided, it
may cause personal injury or serious damage to equipment.

Warning

This sign indicates a potentially dangerous electrical condition. If not
avoided, it may cause personal injury or serious damage to
equipment.

Warning

This sign indicates a potentially dangerous hot surface. Contact with it
may cause personal injury.

Warning

This symbol indicates a situation that, if not avoided, can lead to
serious damage.

2.3 Safety Precautions

 Make sure that the robot arm and the tool/end effector are both correctly and

securely fastened in place with bolts. Ensure that the robot arm has sufficient space

to move freely.

 Ensure that the safety measures and/or robot safety configuration parameters as

defined in the risk assessment have been established to protect programmers,

operators and bystanders.

 When operating the robot, please do not wear loose clothing or jewelry. Make sure

long hair is tied back when operating the robot.

 If the robot is damaged, do not use it, for example, when the joint cap is loose,

damaged or removed.

 Never put your fingers into the control box.

 Do not connect any safety devices to the standard IO interface. Only the safety IO

interface can be used.

 Ensure correct installation settings (such as the installation angle of the robot, the

weight in TCP, TCP offset, and safety configuration).

 Only after a risk assessment is conducted can the drag-and-drop teaching function

be used during the installation process.

Version V1.0 Copyright @ Estun Codroid 16

 The tools/end effectors and obstacles must not have sharp corners.

 Ensure that people are warned to keep their heads and faces out of the reach of

robots that are in operation or about to start operating

 When using the teaching pendant, pay attention to the movement of the robot.

 If a risk assessment has been determined, do not enter the safe confines of the robot

or touch the robot while the system is in operation.

 Connecting different machines may increase the risk of danger or cause new hazards.

Always conduct a comprehensive risk assessment of the entire installation.

 Do not modify the robot. Any modification to the robot may cause unpredictable

dangers. Any authorized reconfiguration of the robot must be carried out in

accordance with the latest version of all relevant service manuals.

 Ensure that robot users are aware of the location of the emergency stop button and

are instructed to activate it in case of an emergency or abnormal situation.

 The robot and the control box will generate heat during operation. Do not touch the

robot when it is running or has just stopped. You can cool down the robot by

turning it off and waiting for one hour.

 When the robot is connected to or works together with machinery that could cause

damage to the robot, it is strongly recommended to test all the functions of the

robot and the robot program separately.

 Do not expose the robot to magnetic fields, fire, explosive hazards, radio

interference, liquids, etc. for an extended period of time, as this may damage the

robot.

 The robot system is not permitted to be used in explosive or potentially explosive

environments.

 When the equipment is in operation, even if the mechanical arm appears to have

stopped while waiting for a start signal, it should still be regarded as in motion.

Please do not approach the mechanical arm.

 During the processes of transporting, installing, operating and maintaining robots,

operators must wear safety gloves, glasses, anti-crush shoes and other safety

protective equipment to avoid dangerous injuries.

2.4 Safety Requirements

The safety functions generally comply with the ISO 10218-1 standard, and specifically

meet the following requirements.

When safety-related control systems are required, the design of safety-related

components should be such that:

 The failure of any single component will not result in the loss of safety functions.

 Where practicable, a single fault shall be detected before or at the next demand on

the safety function.

Version V1.0 Copyright @ Estun Codroid 17

 When a single fault occurs, the safety function should always be in operation and

maintain a safe state until the detected fault is repaired.

 All reasonably foreseeable faults should be detected.

This requirement is regarded as equivalent to the Category 3 structure as described in

ISO 13849-1. Category 3 is typically achieved through redundant circuits. The safety

function and the robot controller comply with Performance Level (PL) d as stipulated in

ISO 13849-1.

2.5 Safety Disclaimer

This manual does not provide comprehensive information on the design, installation and

operation of the robot in conjunction with other equipment, nor does it cover the

possibility of the impact of such use on surrounding equipment.

The safety of a robot installation depends on how the robot is integrated, and the

integrator needs to conduct a risk assessment of the design and installation of the system

in compliance with the laws and regulations of the country where it is installed, as well as

safety codes and standards.

Risk assessment is one of the most important tasks that an integrator must complete. The

integrator can refer to the following standards to carry out the risk assessment process:

 ISO 12100:2010 Safety of machinery - General principles of design - Risk assessment

and risk reduction；

 ISO 10218-2:2011 Robots and robotic devices - Safety requirements - Part 2:

Industrial robot systems and integration

 RIA TR R15306-2014 Technical Report on Industrial Robots and Robot Systems -

Safety Requirements, Task-based Risk Assessment Method

 ANSI B11.0-2010 Machinery Safety; General Requirements and Risk Assessment.

2.6 Limitation of Liability

Any safety information contained in this manual should not be regarded as a guarantee

for our company's robots. Many matters cannot be described in detail, and there is still a

possibility of causing injury or damage.

Our company is committed to continuously improving the reliability and performance of

our products and reserves the right to upgrade the products without prior notice. We are

not responsible for any errors or omissions in this manual and reserve the right of final

interpretation of this manual.

2.7 Stop category

Type 0 Uncontrolled stop, which stops the robot by immediately
disconnecting power to the actuator.

Type 1 Controlled stop, where the actuator actively brakes but does not

Version V1.0 Copyright @ Estun Codroid 18

ensure that the robot stops on its trajectory. After the robot has
stopped, the power supply is cut off.

Type 2 Controlled stop, where the actuator actively brakes and ensures that
the robot stops in its trajectory. The robot stops without
disconnecting the power supply.

In accordance with the IEC 60204-1 standard, Codroid robots are equipped with three

stop categories, namely Stop Category 0 (Cat.0), Stop Category 1 (Cat.1), and Stop

Category 2 (Cat.2). Among them, Stop Category 0 is an uncontrolled stop, while Stop

Categories 1 and 2 are controllable stops.

According to IEC 60204-1 and ISO 13850, emergency equipment is not a safety guard

device. They are supplementary protective measures and are not used to prevent

injuries.

In case of an emergency, press the emergency stop button to immediately halt all

movements of the robot and lock it in place. The emergency stop function should not

be used as a risk reduction measure but can be regarded as a secondary protection

device for use only in critical situations.

Under normal circumstances, if it is necessary to stop the robot's movement, please use

other methods. After a risk assessment, if an emergency stop button needs to be

installed, it must comply with the requirements of IEC-60947-5-5.

When the emergency stop button is pressed, the robot system will cut off the power

supply to the robot, and the brake devices between the robot's joints will automatically

lock the joints. However, due to the effect of gravity, slight movement of the robot body

is a normal phenomenon, but this may also pose a risk of pinching or colliding with the

human body.

The implementation of the stop category relies on the joint driver, for further

description, refer to IEC 61800-5-2.

Emergency stop and protective stop functions are implemented through the safety

interface. For details, please refer to Section 5.3.2.

2.8 Risk assessment

Before installing or using this product, users must conduct necessary risk assessments

based on the usage conditions and carefully read the residual risks that may exist in the

company's stated values. For relevant content, please refer to the corresponding

software and hardware version manual.

2.9 Safety function

The safety functions of the CoDroid robot are shown in the following table.

Safety function Description
Emergency stop When the emergency stop button is pressed, stop category 1 is

activated.
Protective stop When the relevant signal input is low, activate stop category 2. this

Version V1.0 Copyright @ Estun Codroid 19

function needs to be manually reset.
Safety rated deceleration
control

When the correlation signal input is low, it will reduce the TCP
speed to the limit.

Joint position limitation Sets the limit range of allowable joint positions.
Joint speed limitation Sets the limit range for the allowable joint speed.
Joint torque limitation Sets the limit range of allowable joint torque.
TCP location Limitation Sets the limit range of allowed TCP locations.
TCP speed Limitation Sets the maximum TCP rate.
TCP torque limitation Set the maximum torque of TCP.
Robot Power Limit Limit the maximum power of the robot.
TCP Directional Limit Sets the direction limits allowed by the tool.
Security-grade monitoring
downtime

When the relevant signal input is low, activates Stop Category 2.
This function can be reset when the relevant signal input signal is
low.

Speed and distance
monitoring

Maintain a minimum protective distance between the operator and
the robot. The robot system stops when the separation distance
decreases below the protective distance. The robot can
automatically resume motion when the operator leaves the robot
system.

Power Torque Limit Limit the maximum power and torque of the robot.

2.10 Emergency stop recovery

When the emergency stop button is pressed, it will be locked. To unlock it, rotate the

button as indicated on it. Only after unlocking can the alarm be cleared through the

control software, and then power on and enable to restore from the emergency state.

2.11 Forced drive without power

In case of an emergency, if it is necessary to move the robot's joints but it is impossible

or unnecessary to power on the robot, manual forced drive without power can be used.

To perform a no-power forced drive, you must push or pull the robot arm forcefully to

move the joints. Each joint brake has a brake that allows the joint to move under high-

torque conditions.

Manual movement without power drive is only for emergency situations and will affect

the service life of the brake device.

2.12 Stopping time and stopping distance

Provide reference stopping distance and stopping time data for joint 1 (base), joint 2

(shoulder), and joint 3 (elbow):

• Class 0

• Class 1

• Class 2

The test for joint 0 is conducted through horizontal movement, that is, the rotation axis

is perpendicular to the ground.

Version V1.0 Copyright @ Estun Codroid 20

During the tests at joint 1 and joint 2, the robot followed a vertical trajectory with the

rotation axis parallel to the ground and performed a stop operation when the robot

moved downward.

The robot arm is fully extended horizontally.

The general speed of the robot is set at 100%, and it moves at the maximum speed of

the joints.

The maximum effective payload that the robot can handle.

The following table shows the measured stopping distance and stopping time of the 3kg

robot when it triggers a Class 1 stop under the above conditions. For test data of other

models, please consult our technical staff.

The following data is for reference only. Depending on the application scenarios and

usage conditions of the robot, the results of the stopping distance and stopping time

may vary.

Position Stopping distance (rad) Stopping time (ms)
Joint 1 (base) 0.30 282
Joint 2 (shoulder) 0.29 287
Joint 3 (elbow) 0.29 237

2.13 Storage, usage and transportation conditions

 The ambient temperature during storage and operation should be between 0 and

40°C.

 Places with less humidity and drier. Relative humidity of 10%-90% without

condensation;

 Places with little dust, powder, grease fumes and water.

 No flammable materials, corrosive liquids or gases are allowed in the work area.

 For places where the vibration or shock energy on the electrical control cabinet is

small (vibration below 0.5G);

 There should be no major electrical noise sources nearby (such as gas shielded

welding TIG equipment, etc.);

 There is no potential risk of collision with mobile devices such as AGVs.

 The control box should be installed outside the robot's operating range (beyond

the safety fence).

 The control box should be at least 200mm away from the wall to keep the heat

dissipation channel unobstructed.

2.14 Control cabinet and body identification

The following signs and nameplates are attached to locations where specific dangers

may occur. To prevent accidents, please strictly follow the instructions and contents of

Version V1.0 Copyright @ Estun Codroid 21

the signs when operating. Do not tear, damage or remove the signs at will. Be especially

careful when handling the components or units to which the signs and nameplates are

attached and the surrounding areas.

A The equipment must be operated and maintained by
specialized personnel with personal protection.
Make sure to follow the hardware setup instructions. Avoid
using the product incorrectly and causing damage to the
machine or other equipment, or injury to personnel.

B Do not open the control cabinet and body to touch the
internal electronics and circuitry to avoid electric shock.
There is a risk of fire or electric shock.
Always use appropriate personal protective equipment to
protect against the risk of arc flash, failure to follow this
code may result in personal injury or death.

C Hot surfaces that can be hazardous and can cause injury if
contact occurs.

D The robot body has a magnetic field inside, which may be
harmful to the body and electronic equipment.

E Product nameplate to confirm basic product information

Figure 2-1 Control Cabinet Marking, Nameplate Position

Figure 2-2 Labeling and Nameplate Position for Bodies Weighing 10kg or Less

Version V1.0 Copyright @ Estun Codroid 22

Figure 2-3 20kg Body Marking, Nameplate Position

Version V1.0 Copyright @ Estun Codroid 23

Chapter 3 Quick Start

3.1 Confirmation of packing contents

Before using the robot for the first time, the user needs to read
and understand the safety information in this manual and the safety
configuration parameters in the settings.

After the product arrives, please check the shipping list. A standard shipping list includes

the following five items (optional information will be provided separately). The robot

body and the control cabinet are packed in two separate boxes. The robot body

package only contains the robot body, while the control cabinet package includes the

controller body, hand controller, cables connecting the body and the controller, power

cables, etc.

Figure 3-1 Contents of the Carton

3.2 Robot installation

Version V1.0 Copyright @ Estun Codroid 24

3.2.1 Transportation

Keep the original packaging intact during transportation. Store the packaging materials

in a dry place; they may be needed for repacking and moving the robot later. Move the

robot from the packaging materials to the installation location:

When installing the robot arms of S3-60, S5-90 and S10-140, the two die-cast

connecting rods of the robot arm can be lifted simultaneously. Hold the robot until all

the installation bolts of the robot base are tightened. Please refer to 3.2.2 for handling.

When handling the S20-180 robot arm, please refer to 3.2.2 Handling.

WARNING
When moving and handling the equipment, the operator should
wear safety gloves, glasses, anti-smash shoes and other safety
protection equipment to avoid dangerous injuries during the
moving and handling process.

WARNING
- Ensure that no excessive weight is placed on the back or other
body parts when lifting the equipment. Use appropriate lifting
equipment.
Follow all regional and national lifting guidelines. Universal
Robots is not responsible for any damage caused by
transportation of the equipment.
- Ensure that the robot is mounted according to the mechanical
interface as described in 3.2.3 Mounting and 4.5 Mounting
Interface of these instructions.
- If the robot needs to be precisely positioned, it can be
positioned by pins through the two pre-drilled holes.

WARNING
- Ensure that the robot is mounted correctly and in a position that
avoids vibration.
- Turn off the power to the robot arm during mounting and
dismounting to prevent accidents.
Turn off the power:
- Return to the packing position during disassembly.
- Turn off the robot by pressing the power button on the
actuator.
- Disconnect the power plug.

3.2.2 Handling

WARNING
When moving and handling the equipment, the operator should
wear safety gloves, glasses, anti-smash shoes and other safety
protection equipment to avoid dangerous injuries during the
moving and handling process.

Version V1.0 Copyright @ Estun Codroid 25

3.2.2.1 Manner of handling robots weighing 10kg or less

a) Transportation and Unpacking

Figure 3-2 Transportation and Unpacking Diagram for 10kg and blow

b) Install the lifting straps and use the hook to lift the robot arm.

Figure 3-3 Schematic Diagram of the Position of Lifting Straps for 10kg and Below

c) Installation

Figure 3-4 Installation Diagram for 10kg and Below

3.2.2.2 20kg robot handling method

a) Transportation and Unpacking

Version V1.0 Copyright @ Estun Codroid 26

Figure 3-5 20kg Transportation and Unpacking Diagram

b) 2. Install the lifting slings and use the hook to lift the robot arm.

Figure 3-6 Schematic Diagram of the Position of the 20kg Lifting Strap

c) Installation

Figure 3-7 Installation Diagram for 20kg Model

WARNING
Lifting or moving heavy parts may cause injury.
- Lifting equipment/lifting aids may be required.

WARNING
Incorrect assembly of components and/or wiring may result in
injury.
- Personal protective equipment (shoes, glasses, gloves) may be
required.
- Failure to use lifting devices appropriate for the weight of the
robot may result in injury to personnel and property damage.
Failure to use a lifting device appropriate for the weight of the
robot may result in injury to persons and damage to property.
- The lifting device should be capable of lifting a weight of 59 kg
(robot only).
- The lifting device should be able to lift 79 kg (robot and
payload).

Lifting sling usage: The lifting sling selected should comply with the following standards

under the premise of meeting the load of this product:

Version V1.0 Copyright @ Estun Codroid 27

European Standard:

• BSEN1492-1:2000 + A1:2008 Textile slings - Safety - Flat webbing slings, made of

man-made fibers, for general purposes.

•BS EN 1492-2:2000 + A1:2008 Textile slings - Safety - Round slings made of synthetic

fibers for general purposes.

Chinese standard:

• JB/T8521.1-2007 Safety of woven slings - Part 1: Flat web slings for general purposes

made of synthetic fibers

• B/T8521.2-2007 Safety of woven slings - Part 2: General purpose synthetic webbing

slings for round lifting

WARNING
Using a round sling without inspection may result in injury.
- Inspect slings before and after each use.
- If possible, check the slings during use.

WARNING
Using a damaged round sling may result in injury.
- Inspect slings before and after each use.
- Do not use if sling is cracked, torn or has loose stitching.
- Do not use if sling shows signs of heat damage.
- Protect slings from sharp edges and friction.
- Do not tie knots in the sling.
- If possible, check the sling during use.

3.2.3 Installation

WARNING
Before performing safety sensing on the equipment, confirm that
the operator needs to wear safety gloves, glasses, anti-smash
shoes and other safety protection equipment to avoid dangerous
injuries during installation.

Mount the robot arm using bolts of at least grade 12.9 strength and the mounting holes

in the base as shown. See Section 4.5 for robot base mounting dimensions.

The recommended installation torque is as follows:

Item S3-60 S5-90 S10-140 S20-180
Bolt M6 M8 M8 M12
Quantity 4 4 4 4
Flat washer Φ6 Φ8 Φ8 Φ12

Locating pin Φ4 Φ6 Φ8 Φ8

Torque >=10N·m >=20N·m >=35N·m >=70N·m

The robot needs to be installed on a solid and vibration-free support surface. The

support must be capable of withstanding at least ten times the full torsional force of the

https://cn.bing.com/dict/search?q=flat&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=washer&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=locating&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=pin&FORM=BDVSP6&cc=cn

Version V1.0 Copyright @ Estun Codroid 28

first joint and at least five times the weight of the robotic arm.

Figure 3-8 Ontology Installation

The robot can be installed in any position and orientation, supporting various

installation methods such as overhead and side mounting. For non-vertical installations,

the installation angle of the robot needs to be set in the robot settings. For the

installation method of the robot body and the setting method of the installation angle

in non-vertical installations, please consult our technical personnel.

Cable Connections

Before powering up the robot, you need to connect the robot cables according to the

cable connection diagram in Figure 3- 9.

Network cable: connects the controller to the tablet for controlling the robot's

movements.

Hand controller: used for controlling the emergency stop, enabling and power on/off of

the robot.

Control cable: used to provide power and communication for the robot body;

Power cable: Provides power for the robot system.

WARNING
Before energizing the robot, check that the voltage and
frequency of the power supply meet the requirements; accessing
the wrong voltage can cause the robot to malfunction.

WARNING
A power cord is included in the package, but since single-phase
power outlets vary from country to country and region to region,
please purchase a power cable that meets the requirements
according to the customer's region.

Version V1.0 Copyright @ Estun Codroid 29

Figure 3-9 Schematic Diagram of Cable Connections

3.2.4 Operation position layout

The positions of the operator, the robot body and the control cabinet equipment are as

shown in the operation position layout diagram in Figure 3-10.

Suggestion: When the robot is in operation, the operator should stand outside the reach

of the robot's arm to ensure personal safety.

This robot is equipped with a collision detection function and complies with the IOS/TS

15066:2016 standard.

Refer to the content described in Section 4.2 on the workspace to ensure that the

operator operates the robot outside the robot's workspace area. Do not operate the

robot when there are people inside the robot's workspace area.

Refer to the content described in Section 4.7 for the placement of the control cabinet.

Ensure that the control cabinet is installed in a well-ventilated, flat and vibration-free

environment.

WARNING
Before energizing the robot, check that the voltage and
frequency of the power supply meet the requirements; accessing
the wrong voltage can cause the robot to malfunction.

Version V1.0 Copyright @ Estun Codroid 30

Figure 3-10 Layout Diagram of Operating Positions

3.3 Start using

After completing the above tasks, you can start using the robot.

3.3.1 Power on and start up

When the robot cables are properly connected, power on the system and turn on the

switch at the power connection of the controller. At this point, you can hear the

controller's fan start working. Then press the power-on button on the front of the control

box. The button will turn green and stay lit, indicating that the control box has been

powered on.

2. Wait until the light strip at the end of the robot turns into a constant white light and

the small screen at the end of the arm shows "Communication [Real-time]" and

"Operation [Normal]". This indicates that the controller has been successfully started and

the robot body has established communication with the controller. At this point, you can

log in to the web page to control the robot.

3. Turn on the tablet and modify its static IP address to 192.168.101.XXX through the

settings.

4. Open the browser and enter the robot's IP address: 192.168.101.100:9098 in the

address bar. Press Enter to jump to the login page as shown in Figure 3-11. If you cannot

jump to the login page, please check the IP address of the tablet. If you still cannot

Version V1.0 Copyright @ Estun Codroid 31

access the login page, please contact the after-sales service personnel.

Figure 3-11 Login Page

5. You can log in to the control page by entering your account and password. The initial

accounts and passwords available for use are as follows. Different accounts have

different permissions. For details, please refer to the appendix.

Account Password
User 123456
Admin 123456

6. After logging in, you can jump to the robot control page, at this time you can carry

out the power-up operation, before powering up, you need to make sure that the

emergency stop button on the hand manipulator has been reset, and there are no

people and equipment within the robot's range of motion. Click the button

“ power on” in the “3D Simulation” view, as shown in Figure 3-12 Robot

Control Interface, you can hear the sound of the brake release at the joints, indicating

that the joints are powered up.

Figure 3-12 Robot Control Interface

7. As shown in the main interface of Figure 3-13, it indicates that the robot has been

powered on successfully. Now, you can control the robot to move.

Version V1.0 Copyright @ Estun Codroid 32

Figure 3-13 Main Interface

3.3.2 Write a program

In manual mode, the robot can perform joint jogging and end-effector jogging.

Joint point movement: It enables the control of the robot to perform single-joint

movements. The speed of point movement can be adjusted manually by changing the

speed ratio. a1, a2, a3, a4, a5, and a6 respectively represent the six joints of the robot.

Endpoint jogging: It enables the control of the robot's movement in the Cartesian

coordinate system. The jogging speed can be adjusted by changing the manual speed

multiplier. The reference coordinate system during the robot's movement can be

changed by switching between the current coordinate system and the tool coordinate

system. x, y, and z represent the directions of the three axes of the reference coordinate

system, while a, b, and c represent rotations around the x, y, and z axes of the reference

coordinate system, respectively.

a) In manual mode, control the robot to move to the target point.

b) Click “ pose”, click “ ” to record a point P1;

c) Jog the robot to another position and repeat steps 1 and 2 to add the second

point, as shown in Figure 3-14.

Version V1.0 Copyright @ Estun Codroid 33

Figure 3-14

d) Select “ jogging” in the left instruction column and click or directly drag

and drop instruction “ ” to add a motion instruction to the right program

tree;

e) Select “ ” in the program tree, click “ parameters”,

the corresponding parameter column of the instruction will appear, the target

position select the point P1 set just now, and the target speed select the

system default V100, when the instruction parameter page doesn't show the

red error word, it means that the setting of the instruction is completed;6.

Repeat Step 5 and add another instruction with its parameters set.

f) Repeat step 5 to add another command and set the parameters.

g) 7. Add the “ ” instruction from “ logic” and drag it to the first line of

the program.

h) Adding the “ ” instruction in “ logic” and selecting the jump node as

Start allows the program to run continuously and repeatedly, as shown in

Figure 3- 15 below.

Figure 3-15

i) Click “ ” to save the program, there will be a pop-up when it is saved;

j) Click “ ” and select OK to switch the robot to automatic mode

k) Click “ ” to select Auto Execute and the robot will move from P1 to P2.

l) Select and confirm to switch the robot to automatic mode.

Version V1.0 Copyright @ Estun Codroid 34

m) Click on “ ” to pause the robot program and the robot will pause its

movement at the same time.

n) After the robot has paused, click on “ ” to resume running the robot

program.

o) Clicking on “ ” will stop the robot program and the robot will stop moving.

p) If the robot is manually moved or stopped after the program has been paused,

it will need to be switched to manual mode first, and then switched to

automatic mode again after robot “ move to running

resume point to continue running” before the program can continue to run.

3.3.3 Power off

Adjust the robot's attitude to the proper position, click “ shut down” and

the robot powers down, then press and hold the power button on the controller until the

always-on green light goes out to release the button.

Version V1.0 Copyright @ Estun Codroid 35

Chapter 4 Mechanical Hardware and Installation

4.1 Robot composition

The Codroid S series robot features six rotating motion joints, a large arm and a small arm

as connecting rods. The base of the robotic arm is equipped with an aviation plug, the end

of the robotic arm is equipped with a button and an indicator light, and the side of the

tool flange is equipped with a button, a screen and an aviation plug.

Figure 4-1 Composition of S Series Robots

4.2 Work Space

When choosing the installation location for the robot, it is essential to consider the

cylindrical space directly above and below the robot. It is necessary to avoid moving the

tool towards this cylindrical space, as doing so would lead to entering the singularity point,

causing the joints to move too fast during operation. This would result in low robot

efficiency and make risk assessment difficult.

WARNING
When the robot is operated in manual mode (taught), personnel
should be outside the safe guarding space.
The emergency stop button of the robot hand manipulator must
be within reach in manual mode, and at least one emergency
stop switch needs to be set outside the robot's range of motion.
The robot's range of motion is the maximum range of motion of
the body when the robot does not have any motion limits set.
Robot movement limits can be set so that all operations do not
fall outside the maximum range of motion of the robot body.

Version V1.0 Copyright @ Estun Codroid 36

Fi

gure 4-2 Dimensions and Working Space of S3-60

Figure 4-3 Dimensions and Working Space of S5-90

Version V1.0 Copyright @ Estun Codroid 37

Figure 4-4 Dimensions and Working Space of S10-140

Figure 4-5 Dimensions and Working Space of S20-180

4.3 Load curve

The maximum allowable payload of a robotic arm depends on the offset of the center of

gravity. When the distance of the load's center of gravity increases, the load that the robot

can bear decreases. According to the eccentric distance of the load, with the eccentric

distance on the XY plane as the ordinate and the value of Z as the abscissa, find the

corresponding coordinate point of the eccentric load. Observe under which curve this

Version V1.0 Copyright @ Estun Codroid 38

point lies. The load indicated by that curve is the maximum load that the robot can bear

under the current working condition.

The total load of the tools and workpieces loaded at the end of the robot must not

exceed the maximum load.

WARNING
When calculating loads, the weight of the media flange must be
included and ensured to meet the robot's load specifications.
Ensure that the system never exceeds the maximum allowable
load. The user should carry out a full risk assessment of the media
flange and the workpiece to avoid shock, vibration, crashing,
entanglement, puncture, puncture and other hazards. Ensure the
overall safety of the system.

F

igure 4-6 Payload Curve of S3-60

Version V1.0 Copyright @ Estun Codroid 39

Figure 4-7 Payload Curve of S5-90

Figure 4-8 Payload Curve of S10-140

Version V1.0 Copyright @ Estun Codroid 40

Figure 4-9 Payload Curve of S20-180

4.4 Flange interface

The end flanges of the S series robotic arms all have the same size. Each flange has four

M6 threaded holes, which can be used to attach tools to the robot. The flange design

complies with the national standard GB/T 14468.1-50-4-M6 (or ISO 9409-1-50-4-M6).

The M6 screws must be tightened with a torque of 12Nm, and their strength grade is 12.9.

To accurately reposition the tool, please use a pin in the reserved Ø6 hole to maintain the

precise position. The screw insertion depth for installing the tool must not exceed 8mm.

Version V1.0 Copyright @ Estun Codroid 41

Figure 4-10 Mechanical Installation Interface of S3-60 Pro and Eco Flange

Version V1.0 Copyright @ Estun Codroid 42

Figure 4-11 Mechanical Installation Interface of S5-90 Pro and Eco Flange

Version V1.0 Copyright @ Estun Codroid 43

Figure 4-12 Mechanical Installation Interface of S10-140 Pro and Eco Flange

Version V1.0 Copyright @ Estun Codroid 44

Figure 4-13 Mechanical Installation Interface of S20-180 Pro and Eco Flange

4.5 Installation interface

Version V1.0 Copyright @ Estun Codroid 45

Figure 4-14 Mechanical Installation Interfaces of the Base for S3-60 and S5-90

Version V1.0 Copyright @ Estun Codroid 46

Figure 4-15 Mechanical Installation Interfaces of the Base for S10-140 and S20-180

4.6 Robot Specification

Version V1.0 Copyright @ Estun Codroid 47

Model S3-60 S5-90 S10-140 S20-180

DOF 6
Payload（kg） 3 5 10 20
Reach（mm） 575 919 1400 1777
Repeatability（mm） ±0.03 ±0.03 ±0.05 ±0.1
Weight（kg） 18 22 38 59
Certification EN ISO 13849-1 PLd Cat.3 & EN ISO 10218-1
Working range Axis 1/2/4/5/6：±360° Axis 3：±160°
Max. Speed of axis 【3、5、10kg】Axis 1/2/3：150 °/s Axis 4/5/6：180 °/s

【20kg】Axis 1/2：110 °/s Axis 3：150 °/s Axis 4/5/6：180 °
/s

Max. Speed at Tool
End (m/s)

2 2.5 2.5 3.2

Flange
Communication

2DI, 2DO，24VDC，MODBUS RTU，RS485

Mounting Any orientation
Operating Temp. 0 – 40 ℃
Operating Humidity 70% RH
Operating Noise ≤65dB

4.7 Control cabinet

Figure 4-16 Cabinet interface

Power switch Interface

Handle

Vent

https://cn.bing.com/dict/search?q=Repeatability&FORM=BDVSP6&cc=cn

Version V1.0 Copyright @ Estun Codroid 48

Figure 4-17 Emergency stop and switch position diagrams and safety IO interface position

diagrams

Safety device 1 hand-held enable channel, 1 hand-held E-stop channel

IP classification IP20

I/O ports 16DI， 8DO， 4AI/4AO，7 stop inputs

I/O power supply 24VDC, 2A

Operating temp. 0~40℃

Operating humidity 10~90%RH， Non-condensing

Noise ≤65dB

Altitude Below 1000m

Power AC100- 240V, 50/60Hz

Dimensions 380mm x260mm x 200mm

Weight 14kg（Cabinet of 20kg robot），11.8kg（Cabinets of 10kg
and below）

4.8 Handle operator

Power Button

Enable Button

Mode Switch

急停按钮

ESTOP

https://cn.bing.com/dict/search?q=Non&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=condensing&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=Operator&FORM=BDVSP6&cc=cn

Version V1.0 Copyright @ Estun Codroid 49

Figure 4-18 Hand Controller Interface

The hand controller contains four switches or buttons, namely the emergency stop button,

the power on/off button, the enable switch, and the mode switch. Their positions are

shown in Figure 4-18 Hand Controller Interface.

When the robot is off, you can press the power button to turn it on; when it is on, hold

down the power button for a long time to turn it off.

In case of an emergency, press the emergency stop switch on the hand controller. The

robot will be disabled, stop all movements and lock.

When the emergency stop button is pressed, it will be locked. To unlock it, rotate the

button as indicated on it. Only after unlocking can the alarm be cleared through the

control software, and then the enable switch can be turned on to restore from the

emergency state.

The enable switch is a three-position switch. In manual mode: the robot can move only

when the enable switch is in the middle position; when the enable switch is fully released

or fully pressed, a Type 2 stop will be triggered.

warn

1. Do not install an enable switch, which, ifnot avoided,
couldresult in death or serious injuryor damage to the
device.

2. Do not disable the enable switch in any way, which, if
not avoided,could result in death or serious injury or
damage to the device.

3. Do not change or modify the enable switch, which, if
not avoided,could result in death or serious injury or
damage to the device.

4. The enable switch takes effect onlyin manual mode
andcannot trigger any stop function in automatic
mode.

Version V1.0 Copyright @ Estun Codroid 50

Chapter 5 Electrical Hardware and Installation

5.1 End Interface

The base of the robotic arm is equipped with a heavy-duty interface, the end of the

robotic arm is fitted with buttons and indicator lights, and the side of the tool flange is

provided with buttons, a screen and an aviation plug. As shown in Figure 5-1, an

overview of the end interface.

Figure 5-1 Overview of the Terminal Interface

5.1.1 Pro terminal interface

Interface Description
M8 Power supply, input, output and communication IOs
Flange Button User function customization buttons, free drag by default
Flange
Button1~3

User function customization buttons to set up functions in the setup
screen

Screen Displays robot status, bus communication, inputs and outputs, RS485
baud rate, user-defined button status, etc.

Indicator light Robot status indicator strip

5.1.2 Meaning of the indicator light strip

Color Information
Blue stays on Initialization in progress
White Turned on but not powered up
Green Manual mode
Yellow flashing Auto-run mode
Red flashing Robot error

5.1.3 M8 Interface

Version V1.0 Copyright @ Estun Codroid 51

The M8 flange interface of the robot is located at the rear side of the end flange. The pin

distribution and definitions are as follows.

Figure 5-2 Pin Distribution of M8 Interface at the Flange End

Pin No. Name Definition
1 DI0 Digital input 0 (flangeDI 0)
2 DI1 Digital input 1 (flangeDI 1)
3 DO0 Digital output 0 (flangeDO 0)
4 DO1 Digital output 1 (flangeDO 1)
5 24V+ Positive 24V supply to external
6 485- 485 communication - (A) of MODBUS
7 485+ 485 communication + (B) of MODBUS

8 GND
Flange internal ground; 24V power supply output
negative terminal

The cable model for the M8 interface is Lumberg KKMV 8-354 or Lutronic FP-222460. It

provides an external 24V power supply with a maximum current of 2A.

The digital output is of PNP type, capable of providing a maximum current of 5mA, and

only offers level signals, which cannot be used to drive devices.

The digital input is configured as PNP type. When a switch is used as the DI input source,

the wiring method is as follows.

Figure 5-3 Wiring of PNP Type DI Switch at Flange End

5.2 Screen information

Version V1.0 Copyright @ Estun Codroid 52

Figure 5-4 Screen Information at the End of the Flange

Info Instruction

Bus state “Offline” (red): indicates that the EtherCAT communication state

machine is in INIT, which usually occurs at startup or when the

communication cable from the controller to the flange is

disconnected somewhere.

“Mailbox” (yellow): indicates that the EtherCAT communication state

machine is in PreOP or BOOT, which occurs when the flange

firmware has been updated or when the PDO has not been

established.

“Live” (green): the EtherCAT communication state machine is in

SafeOP, OP, which means that the communication cable is connected

properly and the communication with the controller is normal.

“Error” (red): indicates that the EtherCAT communication state

machine has unexpectedly switched from OP to INIT, which usually

occurs when the cable is disconnected during communication, when

the controller is suddenly powered down or during a soft reboot.

Robot state “Normal” (green): the robot has no errors.

“Error” (red): the robot is running with errors.

IO state A high cursor means the corresponding item is active; a low cursor

means the corresponding item is not active.

Bus State:

Communication

A

Robot State:

Running B

Modbus rate

Breathing light

or error info

IO State

24V output

Buttons: 1 - 4 24V intput

Button pressed: 24V output

active/24V input active

Button released: 24V output

inactive/24V input inactive

Version V1.0 Copyright @ Estun Codroid 53

MODBUS rate MODBUS baud rates include 115200, 57600, 28400, 19200, 9600,

4800, 2400, 1200, 600, which can be configured through parameters.

Breathing light or

error info

Slow green blinking (2s): communication not fully established (INIT,

BOOT, PreOP)

Green fast blinking (0.5s): real-time communication is connected

(SafeOP, OP)

Red flashing (2s): communication abnormally disconnected OP->INIT

Error message: the robot reports an error and displays an error alarm

5.3 Control cabinet interface

There is only one power button on the front of the control cabinet. Press and hold it for a long

time when the system is off to start the robot system, and press and hold it for a long time

when the system is on to shut down the robot system.

Figure 5-5 Power Button of Control Cabinet

Figure 5-6 Overview of the Control Cabinet Interface

5.3.1 Overview of Electrical Interfaces

Power Button

Reserved

Handle

operator

LAN

interface

Robot interface

AC power supply

Power switch

Digital I/O Digital/anglog I/O Safety interface

CAN/RS485/IO

接口

Version V1.0 Copyright @ Estun Codroid 54

Interface Instruction

AC power supply For connection to AC100-240V 50/60Hz AC mains power

supply

Power switch Power supply switch

Handle operator Handle operator

Robot aviation

connector

Used to connect the robot to the control cabinet to provide

power and communication to the robot.

LAN For connection to teach pendant, vision, buses and

development debugging

CAN/485/IO CAN/RS485/IO

Safety port Related ports for safety function

Analog/Digital I/O Analog/Digital I/O

Digital I/O Digital I/O

5.3.2 Safety Interface

The safety interface consists of 7 groups of safety dual-channel interfaces. The first to

third groups are protective stop interfaces, and the fourth to seventh groups are

emergency stop interfaces. The internal safety relays of the protective stop interfaces

and the emergency stop interfaces are two independent channels. By default, the

connectors are short-circuited horizontally with yellow short wires at the factory.

Otherwise, the emergency stop state cannot be released.

Figure 5-7-1 Correct Wiring Example for Safety Protective Stop

Version V1.0 Copyright @ Estun Codroid 55

Figure 5-7-2 Correct Wiring Example for Safety Emergency Stop

Figure 5-8 Typical Incorrect Wiring Examples of Safety Protective Stop and Safety

Emergency Stop

5.3.3 General Input and Output Overview

Version V1.0 Copyright @ Estun Codroid 56

Figure 5-9 Functions of Each Terminal of the Input and Output Module

5.3.4 External power connection method for digital input

When entering digital signals, power supply to the port is required. Use an external

power supply and connect the input end with a relay or a PNP-type digital loop. The

wiring method is as follows for reference.

Figure 5-10 Example of Wiring for Relay Digital Input

Figure 5-11 Example of Wiring for PNP-Type Digital Input

5.3.5 Internal power connection method for digital input

When the digital input port is powered, the internal power supply of the base plate can

be used to power the port. The input end can be connected using a relay or a PNP-type

digital loop. The wiring method is as follows:

Version V1.0 Copyright @ Estun Codroid 57

Figure 5-12 Example of Wiring for Relay Digital Input

Figure 5-13 Typical Wiring Diagram for External Power Supply Provision

External power supply for digital inputs Parameter

External supply voltage Typical 24V

Maximum Output Current Maximum output 5A per group

5.3.6 External power connection method for digital output

The digital output to the device terminal is powered by an external power supply. The

output terminal is connected using a relay or PNP type circuit. The wiring method is as

follows:

Version V1.0 Copyright @ Estun Codroid 58

Figure 5-14 Example of Wiring for Digital Output Using a Relay

Figure 5-15 Example of Wiring for Digital Output Using PNP Circuit Type

5.3.7 Internal power connection method for digital output

The digital output to the device terminal is powered by an external power supply. The

output terminal is connected using a relay or PNP type circuit. The wiring method is as

follows:

Version V1.0 Copyright @ Estun Codroid 59

Figure 5-16 Example of Wiring for Digital Output Using Relays

Figure 5-17 Example of Wiring for Digital Output Using PNP Circuit Type

digital output Parameter

Interface type PNP

Output voltage Typical 24V; Maximum 30V

Max output current 125mA max. for single group

5.3.8 Simulation input/output interface

The analog input supports both voltage-type and current-type sensors. The input type

of voltage or current needs to be set in the robot settings options; the analog output

only supports current type.

The analog output port must be connected to a load; otherwise, the robot will
report an error. You can turn off the corresponding analog output port from
the robot's operation interface.

Warn
ing

The wiring for various situations is shown in the following figure:

Version V1.0 Copyright @ Estun Codroid 60

Figure 5-18 Correct Wiring Example for Analog Voltage Input

Figure 5-19 Correct Wiring Example for Analog Current Input Type

Figure 5-20 Correct Wiring Example for Analog Current Output

Analog Inputs Parameter

Resolution 12bit

Measurement range In voltage mode: 0-10V;

In current mode: 4-20mA;

Version V1.0 Copyright @ Estun Codroid 61

Input Impedance In current mode: 20Ω;

Analog Outputs Parameter

Resolution 12bit

Onput Impedance Current mode: 4 - 20mA;

5.3.9 CAN/485/IO interface

The pin definitions of the interfaces including CAN, 485 and IO on the control cabinet are

as follows:

Figure 5-21 Definition of CAN/485/IO Interface

Ports Instruction

CAN+ CAN+

CAN- CAN-

485A 485A/485+

485B 485B/485-

ON/OFF External start/stop button

VCC Start-stop signal transmission

COM Start-stop signal receiving

EN Internal start/stop button

Different wiring methods for power supply on and off:

Method ①: Use the power button on the control cabinet and hand controller to turn on

and off the machine.

(Short-circuit the COM and EN interfaces with a jumper wire.)

Version V1.0 Copyright @ Estun Codroid 62

Figure 5-22 Wiring Diagram for Power Supply Startup Method ①

Method ②: External power supply start/stop button

Short the COM and EN interfaces with a jumper wire, and connect the ON/OFF and VCC

interfaces to an external self-resetting normally open stop button.

Figure 5-23 Wiring Diagram for Power Supply Startup Method ②

Method ③: Self-starting after the control cabinet is powered on

(Short-circuit the VCC and 24VEN interfaces with a jumper wire.)

Figure 5-24 Wiring Diagram for Power Supply Startup Method ③

5.3.10 LAN Network Port

Figure 5-25 Network Interface

LAN ports Instruction

HMI Connect to a demonstrator or tablet. Direct connection to internal

router, router connected to keba's ETH0 port.

Vision Connecting Visuals. Directly connect to the internal router, which is

connected to the keba's ETH0 port.

Modbus Bus connection port. Directly connect to the internal router, which is

connected to the keba's ETH0 port.

Version V1.0 Copyright @ Estun Codroid 63

Debug Debugging, socket port. Direct connection to internal keba controller

ETH1 port.

5.3.11 Communication input

Figure 5-26 AC Input Interface and Switch

The AC input range is: AC100~240 V 50/60 Hz. AC power supply and DC power supply

cannot be connected simultaneously. When in use, a magnetic ring needs to be placed

on the ACIN power cord to eliminate EMC interference.

Version V1.0 Copyright @ Estun Codroid 64

Chapter 6 Maintenance and Warranty

6.1 Notes

 Maintenance work can only be carried out by Codroid or authorized system

integrators.

 Always perform any visual or workplace inspections for maintenance or repair in

accordance with all safety instructions in this manual.

 The change control system and robot joints require recalibration of the robot. The

calibration operation and result judgment method are described in the zero-point

verification manual. Also, the parameter settings need to be checked. If there is a

parameter backup, it can be imported. If not, the parameters need to be reset.

When operating the robot body or control cabinet, the following safety tasks must be

followed:

 Remove the main input cable from the back of the control cabinet to ensure that the

system is completely de-energized. Necessary precautions should be taken to

prevent others from re-energizing the system during maintenance. After de-

energizing, re-check the system to ensure it is de-energized.

 Please check the grounding connection before restarting the system.

 When disassembling the robot body or control cabinet, please comply with the ESD

(Electrostatic Discharge) regulations.

 Avoid disassembling the power supply system of the control cabinet. Even after the

control cabinet is turned off, its power supply system can still retain high voltage for

several hours.

 Avoid water or dust from entering the robot body or control cabinet.

6.2 Daily inspection items

6.2.1 General cleaning

If dust/dirt/motor oil is observed on the controller or the robotic arm, it can be wiped

clean with a cloth dampened with a cleaning agent. Cleaning agents: water, isopropyl

alcohol, 10% ethanol or 10% naphtha.

In extremely rare cases, a small amount of grease can be seen at the joint. This does not

affect the specified function or service life of the joint.

Do not use compressed air to clean the controller or the mechanical arm; otherwise, the

seals and internal components may be damaged.

Version V1.0 Copyright @ Estun Codroid 65

6.2.2 Control box

Inspection plan

Inspection item Method Monthly Semi-
annual

Annual

Emergency stop button for handle
operator

Functional test Χ

Free Drive Mode Functional test Χ

Safety inputs and outputs Functional test Χ

Teach pendant cables and adapters Visual
inspection

Χ

Terminals on the control box Functional test Χ

Control cabinet main power and
switches

Functional test Χ

Highlight the safety features of the robot and recommend monthly testing to ensure

proper functioning.

The following tests must be carried out:

6.2.2.1 Test the emergency stop button on the handle operator

 Press the emergency stop button.

 Observe the robot stop and then turn off the power supply of the joints.

 Restart the robot again.

6.2.2.2 Test free drag mode

 According to the tool specifications, remove the accessory devices or set the TCP/load.

 Hold down the free drag button at the end of the robot to set the robot to free drag

mode.

 Move the robot to a position where it is horizontally extended to the edge of its

workspace.

 While holding down the free drag button, monitor the robot to maintain its position

without support.

6.2.2.3 Test safe input and output

 Check which safety inputs and safety outputs are active and test whether they can be

triggered.

6.2.2.4 Visual inspection

 Unplug the power cord from the controller.

 Check if the terminals are correctly inserted and if the wires are loose.

Version V1.0 Copyright @ Estun Codroid 66

 Check if the network cable inside the controller is loose.

 Check if there is any dirt/dust inside the controller. If necessary, clean it with a vacuum

cleaner that prevents static discharge.

6.2.3 Robot

Inspection plan

Inspection item Method Monthly Semi-
annual

Annual

Check the joint cover Visual
inspection

Χ

Check cover screws Functional test Χ

Inspection of flat rings Visual
inspection

Χ

Check robot cables and connections Visual
inspection

Χ

Checking the robotic arm mounting
bolts

Functional test Χ

Check tool mounting bolts Functional test Χ

Check the screws connecting the joints Functional test Χ

The purpose of the functional inspection is to ensure that the screws, bolts, tools and

mechanical arms are not loose. The screws/bolts mentioned in the inspection plan

should be checked with a torque wrench.

6.3 System update

This chapter explains how to update the CoDroid robot software. The information in this

manual is accurate at the time of writing. Users will not be notified in advance of

updates for subsequent products.

Before starting the update, please confirm the following update precautions.

Please ensure that the power supply will not be turned off or cut during the update.

Confirm that the correct version of the update compressed file has been obtained.

All the programs of the robot have been backed up.

Before updating, please check the release notes of the version you are updating to. For

detailed information, contact CoDroid technicians.

6.3.1 Update steps

After starting up, enter the robot control platform, go to the project tab, click on the

project management interface, and select the program to be backed up for

downloading to perform the program backup.

Version V1.0 Copyright @ Estun Codroid 67

2. Switch the robot to the "power-off" state and press the emergency stop button.

3. Click on the system version number at the lower right corner of the page to enter the

update interface.

4. Drag the update file into the file selection box, or click the 'click to upload' button to

select the file you need to update and wait for the upload to complete.

5. Select the appropriate options based on the model requirements.

Version V1.0 Copyright @ Estun Codroid 68

6. After confirming the update, wait for the robot software to restart automatically. The

update is complete once the restart is finished.

6.4 Common Mistakes

This section lists some common errors that may occur during the use of the robot. If you

encounter other errors that cannot be resolved, you can download the robot log file in the

log interface and send it to the after-sales personnel for analysis and processing.

6.4.1 Singularity/Inverse solution failure

The working range of a robot is a spherical space with the arm's reach as the radius.

However, there are some special positions and postures that are singular points for the

robot, and these should be avoided during operation.

The following are three typical types of singularities:

A cylindrical area with the base of the robot's pedestal as the bottom surface;

Version V1.0 Copyright @ Estun Codroid 69

When the a3, a4, and a6 joints of the robot are parallel;

When the angle between the robot's upper arm and lower arm approaches 180°,

6.4.2 Trigger collision detection

The torque sensors in the robot joints will detect the force exerted on the robot in real

time. When the force exceeds the expected value, a collision detection will be triggered. At

this point, it is necessary to confirm whether the robot's movement trajectory is correct

Version V1.0 Copyright @ Estun Codroid 70

and whether there is anything obstructing the robot's movement.

If the robot's motion trajectory is correct but the collision detection is still triggered, it is

necessary to check whether the tool is set correctly, whether the load is set correctly, and

whether the pipeline of the end tool is normal, etc.

6.4.3 Location/Speed Exceedance

When the robot exceeds the position or speed limit during operation, check whether the

program is correctly written. If it is correct, you can modify the corresponding parameter

limit in the safety settings of the settings.

If a position limit error occurs and the robot remains in an over-limit state even after the

error is cleared, and it still alarms upon re-powering, the rescue mode can be enabled to

adjust the robot to an appropriate posture.

6.4.4 Joint tracking error is too large

When excessive joint tracking errors occur during the robot's movement, it is necessary to

check whether the movement speed and acceleration are reasonable, and whether the

robot's load is correct and within the robot's load capacity.

6.4.5 Alarm cleared

When an alarm pop-up window appears, you can directly activate the rescue mode or

click "OK" and then manually reset it to enter the rescue mode. The steps to clear the

alarm in the rescue mode are as follows:

a) click , click to clear the error report;

b) Click , to turn on the rescue mode;

c) Tap to power up the robot. 4;

d) In rescue mode, rotate the overrun joints to the correct position by tapping the

Version V1.0 Copyright @ Estun Codroid 71

joints;

e) Click to shut down the robot. 6;

f) Tap to exit rescue mode;

g) Repeat step 3 to power up the robot.

6.5 Fault code description

Currently, there are a total of 6 information levels for the robot. The fourth digit of the

error code indicates the error level.

No. Error & Level
0 System occupancy
1 System prompt
2 Alert
3 General Error
4 Critical error
5 Fatal error

 When general errors or more serious issues occur, the robot will power off and stop

operating.

 When a warning-level error occurs, the robot will slow down and stop.

 If multiple errors occur at the same time, the one with the highest severity level will

be executed.

 There will only be one error code for the same type of error, but the content of the

error will be specifically displayed on the demonstrator

 For specific error codes and details, please refer to the appendix.

6.6 Disclaimer

Estun Codroid is committed to creating a harmonious future where humans and

machines coexist. While continuously enhancing the reliability and performance of our

products, we reserve the right to upgrade them without prior notice. Estun Codroid

strives to ensure the accuracy and reliability of the information in this manual, but

assumes no responsibility for any errors or omissions.

The following situations resulting in malfunctions are not covered by this warranty:

 Installation, wiring, and connection to other control devices were not carried out in

accordance with the requirements of the user manual;

 Use beyond the specifications or standards indicated in the user manual;

 Product damage caused by improper transportation or use;

 Damage caused by accidents or collisions;

 Natural disasters such as fire, earthquake, tsunami, lightning strike, strong wind and

https://cn.bing.com/dict/search?q=system&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=prompt&FORM=BDVSP6&cc=cn

Version V1.0 Copyright @ Estun Codroid 72

flood;

 Modifications to system software or internal data;

 Use of this product in radioactive equipment, biological testing equipment or for

hazardous purposes;

 The production date or the start date of the warranty cannot be identified.

 Faults not caused by Nanjing Estun Codroid Co., Ltd. other than the above situations.

6.7 Abandoned robots

Abandoned robots must comply with national and local laws and relevant regulations.

Version V1.0 Copyright @ Estun Codroid 73

Chapter 7 Overview of the Teaching Pendant

Interface

7.1 Login interface

The default startup account is admin, the password is 123456, and the mode is custom.

If the IP address of the connected controller has been modified, you can click the red

button to set the required IP address and port and save it.

Clicking the "Clear Cache" button can clear the browser cache. It is recommended to

clear the cache when switching the connected robot.

Figure 7-1 Login Interface

7.2 Home page

Figure 7-2 Main Interface

Version V1.0 Copyright @ Estun Codroid 74

After successfully logging in, you will be redirected to the main interface, which displays

the contents of “Project” tab by default and is divided into 4 operable areas:

7.2.1 Switch tab area

It includes four buttons: "Engineering", "Settings", "Logs", and "Management", which

respectively switch to four different display interfaces.

7.2.2 Account Settings Button

The button displays the currently logged-in account. Clicking it leads to a "Re-login"

option that redirects to the password interface.

7.2.3 Error message and real-time log window button

Pop up the error message and real-time log window.

Version V1.0 Copyright @ Estun Codroid 75

Figure 7-3 Error Messages and Real-time Logs

When the robot reports an error, an error message is displayed here, containing the time

of the error, the error code, and a description of the error message. After confirming that

the robot's fault status is clear, you can press the “Reset” button to clear the error

message, and the robot can be powered up again after the error status is cleared.

7.2.4 Full-screen display button

Used to switch between full-screen and non-full-screen mode of the web page (full-

screen display is recommended).

7.3 Project Tab

In the Project tab, the main areas include the menu area, graphic programming area,

pose list, variable list, parameter area, 3D display area, IO area, project management area,

and speed multiplier adjustment area.

Version V1.0 Copyright @ Estun Codroid 76

Figure 7-4 Layout of the Project Interface

7.3.1 Quick operation area

Insert instructions above;

Insert instructions below;

Insert instructions internally;

Move the command up one level;

Move the command down one level;

Zoom in on the program tree area;

Reduce the program tree area;

Paste command;

Copy the selected command;

Cut the selected command;

Delete the selected command;

Annotate the selected command;

Linear movement to the point

Version V1.0 Copyright @ Estun Codroid 77

Joint movement to the point

Update Points;

Project Settings

Undo the current operation

Redo the current operation

Open the batch management operation; after opening it, you can manage the project,

program tree and point list in batch. You can select a command individually or select all

or reverse selection, and then you can do copy, paste, delete and other operations on

it; Open the Variable Management screen;

Track record

7.3.2 Graphics Programming Area

Version V1.0 Copyright @ Estun Codroid 78

The graphic programming area can be divided into four parts, namely: the title area, the

instruction classification area for programming, the instruction area for programming,

and the program tree area.

7.3.2.1 Title Area

There are three buttons in the title area, namely:

Project property editing and task management:

 Full screen / Restore window, Close window

 Name the current project.

 Switch between multiple programs / (a single) program

 Program management in multiple programs (subroutine naming, adding new

subroutines, deleting subroutines), with a maximum support of 30 multiple

programs in one project.

Full Screen/Restore Window: Full screen/restore the “Graphics Programming Area”

display.

Close the Graphics Programming Area window.

After closing the “Graphic Programming Area”, you can click on the “Visual Programming”

button A to restore the display.

7.3.2.2 Multitasking

The robot supports multi-tasking programs. Different types of tasks can be added by

Version V1.0 Copyright @ Estun Codroid 79

clicking on the button, namely subtasks, interrupt tasks, programs with motion

instructions and programs without motion instructions. Selecting a task or program

switches the currently programmed program tree.

Interrupt tasks, programs containing motion instructions, and programs without motion

instructions. Selecting a certain task or program can switch the current programming

program tree.

 A project only contains one main task, but can include multiple sub-tasks and

multiple interrupt tasks. When the project runs, it starts from the main task.

 Sub tasks must be initiated and run within the main task through the RUN command

and do not run automatically. Sub-tasks are not allowed to contain motion

instructions. The main task can stop sub-tasks through the KILL command (sub-

tasks are allowed to RUN and KILL other sub-tasks), but the main task cannot be

KILLED.

 Macro tasks must be bound in the main task through interrupt-related instructions.

When the interrupt condition is triggered, the main task enters a suspended state

and then switches to the execution of the bound interrupt task. After the interrupt

task finishes running, the main task resumes operation.

 The macro task cannot contain motion instructions and cannot run other tasks.

Before the interrupt task exits, the robot must be moved to the position where the

interrupt was triggered. Otherwise, after the interrupt task exits, the main task will

remain paused. It is necessary to manually move the robot to the position where the

interrupt was triggered and then click to resume operation.

 When multiple macro conditions are triggered simultaneously, the macro task that

was bound first will be executed. After its completion, the triggering conditions will

be re-evaluated. This logic will be repeated (i.e., only one interrupt task can run at a

time and will not be interrupted by other interrupt tasks).

 A task cannot be run simultaneously by multiple other tasks.

 Programs can only be called by tasks through the Call instruction. Programs are

distinguished based on whether they contain motion instructions.

 Both the main task and interrupt tasks can call all programs.

 Sub tasks can only call programs that do not contain motion instructions.

 A program can be called by multiple tasks simultaneously.

7.3.2.3 Programming instructions

Version V1.0 Copyright @ Estun Codroid 80

Programming instructions refer to graphical programming instructions. After selecting a

category, click on the required graphical programming instruction to add it to the

program tree on the right, or you can directly drag the instruction to the program tree

on the right.

7.3.2.4 Program Tree

In the program tree, you can add, delete, comment, copy, and sort program nodes, and

you can also edit the parameters of the added program nodes.

Add instructions

After selecting a category, click on the desired graphical programming instruction to

add it to the program tree on the right. You can also directly drag and drop the

instruction into the program tree on the right. Depending on the way the instruction is

Version V1.0 Copyright @ Estun Codroid 81

inserted in the quick operation area, it can be added above, below, or as a sub-level of

the currently selected instruction in the program tree.

Delete/Comment Instruction

Double-click the program node to be deleted, or select the parameter list, the

corresponding node edit window, and click the Delete button.

Click the program node that needs to be commented, the corresponding node editing

window pops up, click the Comment button, the commented instruction will be

kept in the program but the instruction will not be executed at runtime.

Copy instruction

Click the program node to be copied, the corresponding node editing window will pop

up, click the Copy button. The new node will be automatically pasted in the next

Version V1.0 Copyright @ Estun Codroid 82

line of the copied one.

Sorting instructions

Select and drag the program node whose sequence needs to be changed and place it

at the desired position. Depending on where it is released, instructions can be added

above, below, or at a sub-level of a certain instruction.

Editing instructions

Double-click the instruction that needs to be edited or select the instruction and then

click the parameter list to edit the detailed parameters of the instruction.

Pose List Area

Folding instructions

Version V1.0 Copyright @ Estun Codroid 83

Some commands can be collapsed; clicking on the in front of a command collapses

the command's secondary, and vice versa expands it.

Instruction Notes

Notes can be added to commands, and the notes will be displayed on the right side of

the commands.

7.3.3 Pose Zone

In the pose tag button, you can double-click to add a new pose. Selecting different

pose types will add the selected pose. There are four types of poses:

 CPOS: Cartesian position

 APOS: axis position (Joint position)

Version V1.0 Copyright @ Estun Codroid 84

 DCPOS: delta cartesian position (increment of the Cartesian pose);

 DAPOS: delta axis position (Increment of joint position);

When CPOS and APOS are added, they represent the Cartesian pose and joint position

of the current robot respectively. When DCPOS and DAPOS are added, all their values

are 0.

For detailed information on various points, please refer to the Variables section.

Edit pose

Click to open the pose editor window. In this window, you can operate on the points.

 Move in a straight line to the point.

 The joint moves to the point.

 Update

 Copy

 Delete

 Edit the name of the location.

 Edit the position values of CPOS, APOS, DCPOS, and DAPOS.

 POSCFG configuration

Move to pose

In non-automatic mode, the "Move to" function has two buttons:

Move to the current position in the MovL mode.

Version V1.0 Copyright @ Estun Codroid 85

Move to the current position in the MovJ mode.

Updated pose

Update the current Cartesian position/joint position to the selected point position via the

button.

Copy pose

By copying the selected points with the button and pasting them afterwards, the

point name will be the serial number of the last added point plus 1.

Delete pose

Delete the selected points with the button.

Edit pose name

Rename the point by using the "Name" text box.

Edit pose values

The text boxes under CPOS, APOS, DCPOS, and DAPOS can be edited. Entering a value

will change the value or increment of the selected point's Cartesian pose/joint position.

POSCG configuration

At the same Cartesian space position, a robot can have multiple combinations of joint

positions (corresponding to the multiple solutions of the robot's inverse kinematics). This

attribute is used to define the morphological configuration data corresponding to the

spatial target point.

When mode = -1, it indicates that the current configuration is to be maintained. The

kinematics of the general six-joint robot has eight sets of solutions. The mode values are

defined as 0 to 7, with the meanings as shown in the following table:

7.3.4 Parameter Area

Version V1.0 Copyright @ Estun Codroid 86

View, edit, and delete the details of the selected program tree instructions. The

parameters of each instruction are slightly different. For specific details, please refer to

Chapter 10.

7.3.5 3D Simulation

Display real-time robot simulation animations as well as the Cartesian coordinate

system pose and joint positions.

Power on/off button, used to control the robot to switch

Version V1.0 Copyright @ Estun Codroid 87

on or off power.

Rescue mode, in which the joints can be jogged without motion range

restrictions (enter this mode when the robot is in the "power-off state").

"Teach mode", after enabling it, power on the robot to move the joints in point mode.

Rescue Mode, to tap the joints without range of motion

restrictions (enter Rescue Mode when the robot is “powered down”, turn it on, and then

power up the robot to tap the joints);

Current coordinate system. Switch the "user coordinate system"

variable currently in use;

Current tool. Switch the "Default Tool" variable in the Settings tab -

Basic;

Current load, switch the "Default Load" variable in the Settings tab -

Basic;

Manual/Auto mode switching；

Simulation/live mode switching, switching between “simulation mode” and “live

mode” of the robot in the power-down state, in the simulation mode, the live robot will

not move;

Drag Sensitivity, which adjusts drag teach sensitivity and whether or not attitude

lock is turned on;

Toolbox with tools for switching viewpoints, clearing motion trajectories, zero

calibration, return to zero position, return to packed position, and more;

Stop simulation rendering and stop rendering the 3D simulation model,

which saves the oscillator hardware resources.

Switch viewpoints to quickly switch between the viewpoints of the 3D

simulation;

Clear Trajectory Line, clears the trajectory line of the end TCP in the 3D

simulation space;

To return to the zero position, click and then long press the lower right button

Version V1.0 Copyright @ Estun Codroid 88

back to the robot home point position;

To return to the safe point position, click and then long press the bottom

right button to return to the robot's safe point position stance. This point position can be

set in Setup Heavy Safety;

The robot returns to the vertical attitude position;

To return to the packing position, click and long press the lower right

button to return to the robot's crating stance;

Target position display, whether or not to display the robot's target position for

the next command in automatic mode;

Tap mode switching, switching between “joint jogging

(articulation)”/“end jogging (Cartesian motion)”, and different speeds can be adjusted by

the speed multiplier.

The End Tap coordinate system allows you to choose to

move the robot along the current coordinate system or the tool coordinate system.

7.3.6 Register

The register interface displays the status of all registers. There are communication

registers inside the robot. For the addresses and meanings of these registers, please

refer to the register table.

Version V1.0 Copyright @ Estun Codroid 89

In the permissions, "ro" stands for read-only access to the outside, and "rw" stands for

read and write access to the outside.

When monitoring is turned on , the pendant refreshes the register values in real

time. When debugging, you can communicate with the external device debugging by

modifying and issuing the value. .

7.3.7 I/O

The I/O interface shows the status of all digital IOs and analog IOs, and you can

manually operate the IOs in this interface in the “unlocked” state , while the IOs

in the “locked” state cannot be manually operated.

After unlocking, you can rename the IOs to make them easier to program.

The mandatory option forces the corresponding input to be changed to a

manually selected state.

7.3.8 Variable Management

Version V1.0 Copyright @ Estun Codroid 90

Under the variable label, defined variables can be stored. For specific details of each

type of variable, please refer to Chapter 8.

Classification of variables

System: Stores DI/DO, AI/AO and other variables. Users are not allowed to create, edit

or delete variables.

Global: Variables with a scope of "global", allowing users to create, edit or delete

variables.

Project: Variables with a scope of "project", allowing users to create, edit or delete

variables.

POINT variable

During the program's operation, by selecting the corresponding pose, the interface will

refresh in real time to display the current point position variables.

Variable search

Enter the variable name in the search box to search for the corresponding

variable.

Create a new variable

Version V1.0 Copyright @ Estun Codroid 91

In the Variable tab, you can click “Add variable” button to add a new variable, select a

different variable classification, type then add the selected variable classification, type,

specific definitions refer to the introduction of variables.

The type should add the selected variable classification and type. For specific definitions,

please refer to the variable introduction.

Variable monitoring

Select the variable you want to monitor and expand it to view the running value.

Currently, up to 10 variables can be viewed at the same time.

Edit variable

Click button to edit the variable name, hold line variable and value for the current

variable. The variable category and variable type cannot be changed.

Delete the variable

Click button to delete the variable.

Save variables

Click button (save variable) to save the variable to the controller.

7.3.9 Project Management Area

In the Project Management menu, you can manage the projects.

Version V1.0 Copyright @ Estun Codroid 92

Project settings, switching language, switching layout, switching theme, refreshing

page, locking window, variable management, and setting online options; you can also

set whether the program tree can be dragged and dropped for commands, and

whether double-click is enabled in the tutorial interface.

New Project, create a new robot project;

Save project, when the button of save project is “red”, the changes of the current

project have not been saved, when the button of save project is “blue”, the changes of

the current project have been saved;

Project management, you can download, copy and delete the saved project;

Import project, import the project saved locally;

Run, run the current project (single-step execution, automatic execution), running

the project must be in “automatic mode”.

Version V1.0 Copyright @ Estun Codroid 93

In the Project Management dialog box, is to download the project, is to copy

the project, is to delete the project.

7.3.10 Speed ratio adjustment area

The speed rate bar for movement can adjust the speed rate. The values for manual jog

mode and automatic operation mode are independent. The value range is 1% to 100%.

The actual running speed of the robot in automatic mode = the speed of motion

instructions × speed ratio.

In manual mode, the joint jogging speed is 100% of the maximum joint jogging speed,

the Cartesian jogging linear speed is 100% of the maximum Cartesian jogging linear

speed, and the Cartesian jogging rotational speed is 100% of the maximum Cartesian

jogging rotational speed. These values can be modified in the relevant options of the

settings tab.

7.4 Settings tab

7.4.1 Basic

When saving parameters, the robot will automatically power off. When powered on

again, the new parameters will be applied.

7.4.1.1 IP address

Double-click the IP address to change the robot's IP address. The change will take effect

after the control cabinet is powered off and restarted.

Version V1.0 Copyright @ Estun Codroid 94

7.4.1.2 Serial number

The serial numbers of the entire machine, control cabinet, robotic arm, and each joint

are the unique identifiers for each component of the robot. The serial number of the

entire machine will also be marked on the labels of the robotic arm and control cabinet.

7.4.1.3 Default tools

By creating a variable of type TOOL in the variable, you can select the created tool in

the drop-down list of the default tool.

The TOOL variable contains the position and rotation of TCP relative to the robot's end

flange, the mass of the tool, the center of mass of the tool (relative to the TCP

coordinate system), and the inertia tensor of the tool.

The default tool is the tool parameter loaded at startup. Incorrect selection of the

default tool may cause the robot to shut down, and in severe cases, it may damage the

robot's joints.

7.4.1.4 Default load

By creating a variable of the PAYLOAD type in the variable, you can select the created

payload in the default payload drop-down box.

The PAYLOAD variable contains the mass, center of mass, and inertia tensor of the

payload.

The default load is the load parameter that is loaded when the machine starts up.

Selecting an incorrect default load may cause the robot to shut down, and in severe

cases, it may damage the robot's joints.

7.4.1.5 DH Parameters

Users can view the DH parameters of this robot here.

7.4.1.6 Installation

You can choose a preset installation method or customize the installation offset and

rotation relative to the world coordinate system. Once the robot is installed and fixed,

the installation rotation and offset will not change.

7.4.1.7 xyz offset

The installation-offset parameter represents the offset of the robot base relative to the

world coordinate system. This parameter has no practical significance in a single-robot

system. In a multi-robot system, it can indicate the relative position relationship

between robots.

Version V1.0 Copyright @ Estun Codroid 95

7.4.1.8 abc rotation

The parameters for installation-rotation are related to the installation posture of the

robot. When installing at other angles, parameter settings need to be made in the

installation-rotation. After setting the parameters, the robot model on the right will

rotate in real time according to the input parameters. When the simulated robot posture

is consistent with the actual one, click the save button. After re-powering on, the

parameters will take effect.

7.4.2 Tools, load, coordinate system

7.4.2.1 Tools

The robot can store up to 16 tool parameters, among which parameter No. 0 cannot be

modified. Tool parameters can be generated through user calibration or freely inputted

with numerical values. The meanings of the tool parameters are as follows:

Parameter Parameter Data type Parameter Meaning
TOOL
Used to
record tool
parameters
that define
tool end
displacement
and rotation
relative to the
robot flange.

x real The displacement offset of the TCP in the x-
direction with respect to the flange coordinate
system in mm.

y real The displacement offset of the TCP in the y-
direction with respect to the flange coordinate
system in mm.

z real The displacement offset of the TCP in the z-
direction with respect to the flange coordinate
system in mm.

a real The Euler angle of rotation of the TCP with
respect to the z-axis of the flange coordinate
system, in deg.

b real The Euler angle of rotation of the TCP with
respect to the y' axis of the flange coordinate
system, in deg.

c real The Euler angle of rotation of the TCP with
respect to the x'' axis of the flange coordinate
system, in deg.

dyn(LoadDyn)
is used to
store the
robot end
tool and load
quality
information
parameters.

M real The wight of the tool in kg.

Pos
The position
of the
installed tool
or load on
the
coordinate
system

Mx real The offset of the center of gravity C of the
mounted tool or clamped load in the X
direction of the coordinate system OTool-XYZ
in mm.

My real The offset of the center of gravity C of the
mounted tool or clamped load in the Y
direction of the coordinate system OTool-XYZ
in mm.

Version V1.0 Copyright @ Estun Codroid 96

OTool-XYZ. Mz real The offset in mm of the center of gravity C of
the mounted tool or clamped load in the Z
direction of the coordinate system OTool-XYZ.

7.4.2.2 Load

The robot can store up to 16 load parameters, among which parameter No. 0 cannot be

modified. The load parameters can be generated by user calibration.

Or enter values freely. The meanings of the load parameters are as follows:

Parameter Parameter Data type Parameter Meaning
dyn(LoadDy
n)
Used to
store robot
end tool and
load quality
information
parameters.

M real The weight of payload

CenterPos
The position
of the
installed tool
or load on
the
coordinate
system
OTool-XYZ.

Mx real The offset of the center of gravity C of the
clamped load in the X direction of the
coordinate system OTool-XYZ in mm.

My real The offset of the center of gravity C of the
clamped load in the Y direction of the
coordinate system OTool-XYZ in mm.

Mz real The offset of the center of gravity C of the
clamped load in the Z direction of the
coordinate system OTool-XYZ in mm.

7.4.2.3 Coordinate system

The robot can store up to 16 coordinate system parameters, among which parameter 0

cannot be modified. The coordinate system parameters can be generated through user

calibration or freely inputted with numerical values. The meanings of the coordinate

system parameters are as follows:

Parameter Data type Parameter Meaning
x real The displacement offset of the user coordinate system origin

relative to the world coordinate system in the x-direction in
mm.

y real The displacement offset of the user coordinate system origin
relative to the world coordinate system in the x-direction in
mm.

z real The displacement offset of the user coordinate system origin
relative to the world coordinate system in the x-direction in
mm.

a real The Euler angle of rotation of the user coordinate system
relative to the z-axis of the world coordinate system, in deg.

b real Euler angle of rotation of the user coordinate system relative
to the y' axis of the world coordinate system, in deg.

c real Euler angle of rotation of the user coordinate system with
respect to the x'' axis of the world coordinate system, in deg.

7.4.3 Others

The master switch can be used to determine whether to enable the security rules. When

Version V1.0 Copyright @ Estun Codroid 97

the master switch is turned off, no rule will take effect.

7.4.3.1 Joint overspeed protection

Whether to enable the safety overspeed protection. After disabling it, the system will not

detect whether the joint speed exceeds the joint overspeed threshold.

7.4.3.2 Joint hypermobility threshold

The overspeed threshold for each joint.

7.4.3.3 End-of-travel overspeed protection

Whether to enable the safety overspeed protection. If it is turned off, the system will not

detect whether the terminal speed exceeds the threshold.

7.4.3.4 Joint collision detection sensitivity

Users do not need to be concerned about the specific threshold parameters for each axis.

The threshold is dynamically changing. 100% represents the highest sensitivity, and 0%

means it is off. The more accurate the load configuration is, the higher this setting can be.

7.4.3.5 Joint collision detection threshold

Each joint of the Codroid S series robot is equipped with a torque sensor to detect the

torque applied to the joint. When the robot is powered on and the detected torque value

exceeds the output torque limit threshold of the joint, the robot will report an error and

power off. At this point, it is necessary to check the cause of the situation. After resolving

the issue, power on the robot again.

The possible reasons for the robot exceeding the torque limit are:

a) The actual load at the end does not match the setting.

b) 2. The robot collided.

c) 3. The settings for speed and acceleration are unreasonable.

d) 4. Other circumstances.

Users can adjust the threshold as needed for their specific applications, but it is not

recommended to disable the protection, as this may lead to potential security risks.

7.4.3.6 Joint Limiting

Joint limit is used to restrict the movement of each robot joint in the joint space, defining

the position range of each joint. Customers can modify the threshold according to the

actual application. If the threshold is set too small, it will affect the movement range of

the robot.

Version V1.0 Copyright @ Estun Codroid 98

7.4.3.7 End stop limit

The end limit is used to restrict the movement position of the robot's TCP, defining the

position range in the x, y, and z axes directions and rotation. Customers can modify the

threshold according to the actual application. If the threshold is set too small, it will affect

the robot's movement range.

7.4.3.8 Safe positions

The robot's posture at the set safety position can be configured to output a signal in the

set IO when the robot is at that position.

7.4.3.9 Manual mode terminal speed limit

In manual mode, the maximum Cartesian speed of the robot can be jogged. Under any

circumstances in manual mode, the speed will not exceed this value.

7.4.3.10 Load verification sensitivity

When the drag robot function is enabled, the robot will verify whether the current load is

correct before the function is turned on. If the actual load deviates too much from the

theoretical load, the robot will not start dragging to protect itself and the operator.

Adjusting the sensitivity level can limit the deviation threshold.

7.4.3.11 Drag enable sensitivity check

At the moment the drag button is pressed, the robot will recheck whether the load

configuration is correct to prevent sudden movement of the robot caused by the user

disabling collision detection while the load configuration is incorrect.

7.4.4 Sports

Motion parameters define the maximum values of the robot's speed, acceleration and

jerk in both automatic and manual modes.

Optimization of sports performance

When enabled, it will optimize the jittering situation during low-speed movement.

7.4.4.1 Point movement

Joint speed

In manual mode, the maximum speed of joint jogging is 30°/s. You can limit the

maximum speed of joint jogging here.

Version V1.0 Copyright @ Estun Codroid 99

End linear velocity

In manual mode, the maximum linear speed of Cartesian point movement is 250 mm/s.

You can limit the maximum linear speed of Cartesian manual point movement here.

Angular velocity at the end

In manual mode, the maximum angular velocity of the end rotation for Cartesian point

movement is 30°/s. You can set the maximum angular velocity of the end rotation for

Cartesian manual point movement here.

7.4.4.2 It's time for exercise.

Joint speed

In manual mode, the default joint angular velocity for moving to a point in joint mode is

30°/s, with a maximum of 90°/s.

End linear velocity

In manual mode, the Cartesian linear velocity for moving to a point in Cartesian mode is

250 mm/s by default, with a maximum of 1000 mm/s.

Angular velocity at the end

In manual mode, the default Cartesian angular velocity for moving to a point in Cartesian

mode is 30°/s, with a maximum of 90°/s.

7.4.4.3 Automatic

Maximum joint speed

The upper limit of the speed that the robot can reach when moving in automatic mode.

After setting the maximum speed, when creating a new variable of the SPEED type, the

speed setting of the TCP will be restricted to be less than this maximum value.

Maximum joint acceleration

In automatic mode, the joint acceleration limits the maximum value of acceleration. Users

can adjust the maximum acceleration value appropriately according to the application,

which can increase the movement tempo. However, if the acceleration is set too high, it

may cause the robot to shake when starting and stopping. Long-term use of

unreasonable acceleration may cause damage to the joint reducer.

Joint acceleration increment

The upper limit of the jerk that the robot can achieve during movement in automatic

mode. The smaller the value, the smoother the movement process, but the longer the

time consumed.

Maximum terminal velocity

The maximum linear speed of the robot end effector in automatic mode. After setting the

maximum speed, when creating a new variable of the SPEED type, the speed setting of

the TCP will be restricted to be less than this maximum value.

Version V1.0 Copyright @ Estun Codroid 100

Maximum acceleration at the end

In automatic mode, the maximum value of the linear acceleration at the robot's end is

limited. Users can adjust the maximum acceleration value appropriately according to the

application, which can increase the motion cycle. However, if the acceleration is set too

high, it may cause the robot to shake when starting or stopping. Long-term use of an

unreasonable acceleration setting may cause damage to the joint reducer.

Add acceleration at the end.

The upper limit of the linear acceleration that the robot can achieve when moving in

automatic mode. The smaller the value, the smoother the movement process, but the

longer the time consumed.

Pause time

The deceleration time when the robot program is paused in automatic mode.

7.4.5 Register communication

Since ModbusTCP, ProfiNet, and EtherNet/IP all operate on the same register address,

only one communication protocol can be selected for use. If none of the

communication protocols are to be used, the enable function should be turned off. To

use ProfiNet or EtherNet/IP, a communication module for the entity must be added.

After modifying the settings, the changes will take effect only after saving and restarting

the robot.

7.4.5.1 ModbusTCP

 Protocol Version

The current software version of ModbusTCP used by the robot.

 Port

The port used by the ModbusTCP protocol when the robot is in the standby state.

 Slaves address

The address where the robot stands when it is in the ready position.

7.4.5.2 ProfiNet

 Protocol Version

The current ProfiNet software version used by the robot.

 Slaves name

The name of the robot ProfiNet slave station can be modified by double-clicking. The

modification will take effect after the robot is restarted.

 IP

Version V1.0 Copyright @ Estun Codroid 101

The IP address of the robot ProfiNet module can be modified by double-clicking to

change the name. The changes will take effect after the robot is restarted.

 Data mode

The ProfiNet protocol data mode supported by different brand devices varies slightly.

You can choose either big-endian mode or little-endian mode.

7.4.5.3 EtherNetIP

 Protocol Version

The current software version of EtherNet/IP used by the robot.

 IP

The IP address of the robot's EtherNetIP module. Double-click to change the name and

reboot the robot before it takes effect.

 Data model

The EtherNet/IP protocol data modes supported by different brand devices are slightly

different, and you can choose either big-endian mode or little-endian mode.

7.4.6 IO

7.4.6.1 DI Function Configuration

When the system detects that the corresponding digital input variable meets the trigger

conditions, it executes the corresponding usage function. Click to create a new function.

You can add multiple actions with the same variable and condition to accomplish the

effect of multiple actions.

Stop dragging: Disable manual dragging of the robot in the mode.

Power on: Enable the robot by powering it on.

Power on in rescue mode: Enable the robot in rescue mode, which temporarily

disables safety checks; Power off: Disable the robot by cutting off power.

Switch to automatic mode: The robot switches to the automatic operation program

mode.

Switch to manual mode: The robot switches to manual teaching mode.

Run the last saved program: Run the last saved program in the automatic operation

mode; Run the specified program: Run the program specified in the drop-down box

in the automatic operation mode.

Stop operation: The robot stops running the program.

Pause operation: The robot pauses the running program.

Continue running: Resume the paused program;

Version V1.0 Copyright @ Estun Codroid 102

Error reset: Clear the robot's error report;

Protective stop: Protective emergency stop of the robot;

7.4.6.2 DO Function Configuration

When the system detects that the trigger conditions are met, the corresponding digital

output function is executed. Click to create a new function configuration. Only one

operation can be added for the same variable.

Exception: When an abnormality occurs in the robot, the corresponding electrical

level is output.

Program running: The corresponding level is output when the robot program is

running;

Program pause: The robot outputs the corresponding level when the program is

paused;

At safety position: The robot outputs the corresponding level when it is at the safety

position.

7.4.7 MODBUS Master

Here, you can set the parameters of the MODBUS master (client). A connection can be

established between the local machine and the MODBUS slave (server) at the target IP

address. Each signal has a unique name and can thus be used in the program.

 Add device

This button can be used to add a new MODBUS slave device.

 Delete device

This button can delete the MODBUS slave device and all its signals.

 Device name

Version V1.0 Copyright @ Estun Codroid 103

The device name can be set to distinguish each device.

 IP address

The IP address of the MODBUS slave device can be changed here.

 Port

The port address of the MODBUS slave device can be changed here

 Reconnection count

The number of times a TCP connection is closed and reconnected.

 Modbus data pack error

The number of received data packets containing errors (i.e., invalid length, lost data, TCP

socket errors).

 Connection status

TCP connection status.

 Add signal

This button can add signals to the corresponding MODBUS slave device.

 Delete signal

This button can delete the signal from the corresponding MODBUS slave device.

 Type

Select the signal type. Available types include:

Read a single coil register (read output coil), read discrete input register (read input coil),

read a single holding register (read output register), read input register (read input

register), write a single coil register (write output coil), write a single holding register

(write output register).

 Address

To display the address of the remote MODBUS slave device, you can select a different

address. The valid address depends on the manufacturer and the configuration of the

remote MODBUS slave device.

 Name

Names can be assigned to signals. Signal names are used when the signals are utilized in

the program.

 Frequency

It can be used to change the update frequency of the signal. The update frequency refers

to the frequency at which requests are sent to the remote MODBUS slave device to read

or write signal values. When the frequency is set to 0, the MODBUS request will be

initiated on demand using instructions in the program.

 From device address

This text field can be used to set the specific slave device address for requests

Version V1.0 Copyright @ Estun Codroid 104

corresponding to a particular signal. The value must be within the range of 0 to 255, with

the default value being 255. If you need to change this value, it is recommended to first

consult the manual of the remote MODBUS device to verify that the function is normal

after the slave device address is changed.

 Response time [ms]

The time between sending a MODBUS request and receiving a response is updated only

when the communication is active.

Overtime

The number of unresponded MODBUS requests.

Request Failed

The number of data packets that could not be sent due to an invalid socket status.

Actual frequency

The average frequency of signal status updates for the main station device (client). This

value is recalculated each time a response is received from the slave station device

(server).

Save

Save the settings and refresh all MODBUS connections. All MODBUS slave devices will be

disconnected and reconnected. All statistical information will be cleared.

7.4.8 Panel IO

The IO settings can enable the analog output on the control cabinet panel and set the

analog input mode.

When using the analog output port, a load must be connected; otherwise, the robot will

report an error. If it is not in use, the corresponding port must be turned off.

When using the analog input port, it is necessary to specify the usage mode, either

current mode or voltage mode; otherwise, the robot will report an error.

7.5 Log tab

The log module records some operation anomalies of users, provides relevant prompts,

and offers assistance in using the software. Meanwhile, when encountering problems, it

can display the corresponding window prompts for viewing, providing information to

professionals for obtaining help and resolving issues.

Version V1.0 Copyright @ Estun Codroid 105

Click the exclamation mark button at the top right corner of the program to view the

error message. If the button is flashing, it indicates that there is an error in the program

and the program will stop running.

Only the latest 10 entries are retained in the system log. Click the button

(log download) in the Logs tab to download this log message locally.

7.6 Management tab

The management interface can import or export some settings or engineering

parameters of the controller, as well as manage users.

The meanings of the import and export configuration are as follows:

 Parameter settings (take effect after restart)

Parameter settings in the Robot Settings tab.

 Global variable

Global variables in robot engineering are not imported or exported along with the

project, so all users can manage them uniformly here.

Version V1.0 Copyright @ Estun Codroid 106

 ModbusTCP Master Configuration (Effective after restart)

The ModbusTCP master configuration set by the user in the settings tab.

In the user list, the admin user can create and delete users here.

The initial accounts and passwords available are as follows. Different accounts have

different permissions. For details, please refer to the appendix.

Account Password Level
user 123456 User
admin 123456 Administrator

Among the registered users, new users can be created and assigned usernames,

passwords, and permission levels.

Version V1.0 Copyright @ Estun Codroid 107

Chapter 8 Introduction to Variables

8.1 Variable Overview

Different domains support different variable types, as described specifically below:

 System domain: System-defined variables that cannot be edited.

 Global domain: IO data types, PLC data types, socket data types, position data types,

area data types, basic data types, clock data types, palletizing data types, system

data types.

 Engineering domain: IO data types, socket data types, position data types, basic data

types, palletizing data types, system data types.

The following "names" are reserved by the system. Names are not case-sensitive, and

users cannot create variables with the same name:

abs, acos, and, asin, assert, atan, break, ceil, collectgarbage, coroutine, cos, debug, deg, do,

dofile, else, elseif, end, error, exp, false, findEnd, floor, fmod, for, format, function, getAt,

getmetatable, goto, huge, if, in, io, ipairs, left, load, loadfile, local, log, math, max, min,

modf, next, nil, not, or, os, package, pairs, pcall, pi, print, rad, random, randomseed,

rawequal, rawget, rawset, real, repeat, require, return, reverse, right, select, strcmp,

setmetatable, sin, sqrt, string, table, tan, then, tonumber, tostring, true, type, until, while,

xpcall, AI, AO, APOS, APosToCPos, APosToStr, AREA, AreaActivate, AreaDeactivate,

ARRAYS, BitAnd, BitNeg, BitOr, BitXOr, BitLSH, BitRSH, BOOL, CalcTool, CalcCoord, CALL,

CenterPos, CLKRead, CLKReset, CLKStart, CLKStop, CLOCK, CompareAI, CompareSimAI,

CPOS, CPosToAPos, CPosToCPos, CPosToStr, DAPOS, DCPOS, DI, DO, ELSE, ELSIF, ENDIF,

ENDWHILE, EXTCPC, GetCamPos, GetCurAPos, GetCurCPos, GetCurOverRide, GetDI8421,

GetMatrix, GetSimAIToVar, GetSimDI8421, GetSimDIToVar, GetTrackId, GOTO, Hand,

InertiaTensor, INT, IToStr, LABEL, LoadDyn, MovArch, MovC, MovCW, MovCircle,

MovCircleW, MovE, MovH, MovJ, MovJRel, MovJSearch, MovL, MovLRel, MovLSearch,

MovLSync MovJSyncQuit, MovLSyncQuit, MovLW, OnDistance, OnParameter,

PalletFromGet, PalletFromPut, PalletReset, PalletToGet, PalletToPut, PAYLOAD, PLCBOOL,

PLCDINT, PLCINT, PLCREAL, POLYHEDRON, PolyhedronAreaActivate,

PolyhedronAreaDeactivate, POSCFG, POSITIONER, PulseOut, PulseSimOut,

ReadModbusReg, REAL, RefRobotAxis, RET, RETURN, RToStr, RUN, SendMessage,

SetAxisVibraBLevel, SetAO, SetCartDyn, SetCoord, SetDIEdge, SetDO, SetDO8421,

SetExternalTCP, SetJointDyn, SetMotionMode, SetOverRide, SetPayload, SetPositioner,

SetRestorePC, SetRtInfo, SetRtToErr, SetRtWarning, SetMatrix, SetSimAO, SetSimAOByVar,

SetSimDIEdge, SetSimDO, SetSimDO8421, SetSimDOByVar, SetTargetPos, SetTool,

SetSyncoord, SimAI, SimAO, SimDI, SimDO, SocketClose, SocketCreate, SocketReadInt,

SocketReadReal, SocketReadStr, SocketSendStr, SoftFloatStart, SoftFloatStop, SPEED, Stop,

STRING, StrToI, StrToR, SYNCOORD, SynCToUserC, TOOL, Tracking, TranStrToApos,

TranStrToCpos, TranStrToInt, TranStrToReal, TrigCam, trimLeft, trimRight, USERCOOR, Wait,

WaitAI, WaitCondition, WaitConvDis, WaitDI, WaitDI8421, WaitFinish, WaitFinishCAM,

WaitSimAI, WaitSimDI, WaitSimDI8421, WaitWObj, WEAVE, WHILE, WriteModbusReg,

Version V1.0 Copyright @ Estun Codroid 108

ZONE, ToolOffset, UserOffset.

8.2 Variable

8.2.1 POSE

Store the absolute coordinate values and offset values of each axis in the Cartesian space

of the robot joint.

Parameter Parameter Data type Parameter Meaning
APOS
Stores the
joint angle
values for
each axis
under the
joint space.

jntpos1 real Angle of joint 1 axis.
jntpos2 real Angle of joint 2 axis.
jntpos3 real Angle of joint 3 axis.
jntpos4 real Angle of joint 4 axis.
jntpos5 real Angle of joint 5 shaft.
jntpos6 real Angle of joint 6 axis.

CPOS
Stores the
position of
the TCP point
under the
Cartesian
coordinate
system.

x real The coordinate of the TCP point in the
x-direction on the reference coordinate
system.

y real The coordinate of the TCP point in the
y-direction on the reference coordinate
system.

z real The coordinate of the TCP point in the
z-direction on the reference coordinate
system.

a(rx) real The Euler angle of rotation of the TCP
point with respect to the x-axis of the
fixed reference coordinate system.

b(ry) real The Euler angle of the rotation of the
TCP point with respect to the y-axis of
the fixed reference coordinate system.

c(rz) real Euler angle of rotation of the TCP point
with respect to the z-axis of the fixed
reference coordinate system.

DAPOS
Stores the
relative joint
angle offsets
for each axis
under the
joint space.

djntpos1 real Angular offset of joint 1 axis.
djntpos2 real Angular offset of joint 2 axis.
djntpos3 real Angular offset of joint 3 axis.
djntpos4 real Angular offset of joint 4 axis.
djntpos5 real Angular offset of joint 5 axis.
djntpos6 real Angular offset of joint 6.

DCPOS
Stores the
position of
the TCP point
under the
Cartesian
coordinate
system.

dx real The coordinate offset of the TCP point
in the x-direction on the reference
coordinate system.

dy real The coordinate offset of the TCP point
in the y-direction on the reference
coordinate system.

dz real The coordinate offset of the TCP point
in the z direction on the reference
coordinate system.

da real The offset of the Euler angle of rotation
of the TCP point with respect to the x-

Version V1.0 Copyright @ Estun Codroid 109

axis of the reference coordinate system.
db real The Euler angle offset of the TCP point

rotated with respect to the y-axis of the
reference coordinate system.

dc real The offset of the Euler angle for the
rotation of the TCP point with respect to
the z-axis of the reference coordinate
system.

8.2.2 Basic Data Types

Parameter Data type Scope Remark
STRING String Global, Engineering,

Tasks
String

BOOL Boolean Global, Engineering,
Tasks

Numeric range: true, false

INT Plastic Global, Engineering,
Tasks

Numeric range: -
9999999999999~
999999999999999

REAL Real Global, Engineering,
Tasks

Numeric range: -
99999999999~
999999999999999

BoolOneArray Boolean
Arrays

Global, Engineering,
Tasks

Data length: 1~255

IntOneArray Plastic
Arrays

Global, Engineering,
Tasks

Data length: 1~255

RealOneArray Real Arrays Global, Engineering,
Tasks

Data length: 1~255

8.2.3 SPEED

It is used to define the movement speed of the robot and external axes. For the

convenience of users, the system presets commonly used speed variables (system

variables that are not allowed to be modified by users), and at the same time, it supports

users to create, delete, modify and other operations on this variable in the three variable

scopes of global, project and program.

Parameter Data type Parameter Meaning
per real Joint Speed Percentage. Used to specify the speed of

movement during joint movement commands,
applicable to MovJ and other commands, value range
1%~100%.

tcp real TCP Linear Velocity. Define the linear velocity of the
robot end point, used for MovL, MovC and other linear
arc motion instructions.

ori real Spatial Rotation Velocity. Define the rotation speed of
robot end point attitude, used for MovL, MovC and
other linear circular motion instructions.

exj_l real External Axis Speed. Defines the speed of the external
linear axis motion.

exj_r real External Axis Angular Velocity. Defines the motion
speed of the external rotary axis.

Version V1.0 Copyright @ Estun Codroid 110

8.2.4 ACC

This parameter is used to define the motion acceleration of the robot and external axes. To

achieve a sufficiently fast motion speed, this parameter is usually adjusted, but it is not

recommended to set the value too high, as it may cause vibrations and even damage to

the joints after long-term operation.

Parameter Data type Parameter Meaning
joint real Joint Acceleration Hundred. Used to specify the motion

acceleration during joint motion commands, for
commands such as MovJ.

tcp real TCP Line Acceleration. Defines the line acceleration at
the robot's end point, used for MovL, MovC, and other
linear circular motion commands.

ori real Spatial Rotation Acceleration. Defines the rotational
acceleration of the robot's end point attitude, used for
MovL, MovC and other linear circular motion
instructions.

8.2.5 ZONE

It is used to define how a certain motion ends or the size of the turning area between two

motion trajectories. For the convenience of users, the system presets commonly used

transition variables (system variables that users are not allowed to modify), and at the

same time, it supports users to create, delete, modify and perform other operations on this

variable within the three variable scopes of global, project and program.

Parameter Data type Parameter Meaning
per real Turning percentage. Applies to motion commands such

as MovJ,MovL,MovC, etc. Indicates how far away from
the target point the turn will start.

dis real Cartesian space turn area size. Used for MovL,MovC
and other linear arc motion instructions, defines the
size of the turn zone of the Cartesian space trajectory,
i.e., when the robot moves to dis millimeters away from
the target point, it starts to turn to move toward the
next target point, the unit is mm.

8.2.6 CLOCK

The value of CLOCK stores clock information.

Parameter Data type Parameter Meaning
state bool Enable state of the clock variable.
value int The count value of the clock variable.

8.2.7 Socket

The network connection Socket variable.

Version V1.0 Copyright @ Estun Codroid 111

Parameter Data type Parameter Meaning
Socket 名称 String Non

8.2.8 INTERRUPT

Interrupt variable.

Parameter Data type Parameter Meaning
value String Non

8.2.9 LsScale

The LsScale type variable is used to record the gain ratio threshold parameters of each

joint axis, which helps to improve the low-speed jitter phenomenon of the robot within a

certain speed range. It is used in conjunction with the speed range threshold parameters.

The setting range is [100, 1000], with the unit being %. This variable can only be created

and modified in the global domain.

Parameter Data type Parameter Meaning
J1 int Gain ratio threshold for J1 axis in %.
J2 int Gain scale threshold value for J2 axis in %.
J3 int Gain proportional threshold value for J3 axis in %.
J4 int Gain ratio threshold value for J4 axis in %.
J5 int Gain ratio threshold value for J5 axis in %.
J6 int Gain scale threshold for J6 axis in %.

8.2.10 LsThresh

The LsThresh type variable is used to record the speed range threshold parameters of

each joint axis, which is used to improve the low-speed jitter phenomenon of the robot

within a certain speed range segment. It is used in conjunction with the gain ratio

threshold parameter. The setting range is [10, 1000], with the unit of r/min. This variable

can only be created and modified in the global domain.

Parameter Data type Parameter Meaning
J1 int Speed interval threshold for J1 axis, in r/min.
J2 int Speed interval threshold for J2 axis, in r/min
J3 int J3 axis speed interval threshold in r/min.
J4 int Speed interval threshold for J4 axis in r/min.
J5 int Threshold value of the speed interval in r/min for the J5

axis.
J6 int Speed interval threshold in r/min for J6 axis

8.2.11 VibrationSuppression

Vibration Suppression Parameters: Vibration suppression parameters.

Parameter Data type Parameter Meaning
Frequency X real Intrinsic frequency of vibration in the X direction
Frequency Y real Intrinsic frequency of vibration in Y direction
Frequency Z real Intrinsic frequency of vibration in the Z-direction

Version V1.0 Copyright @ Estun Codroid 112

Damping
Ratio X

real Damping ratio in X direction

Damping
Ratio Y

real Damping ratio in Y direction

Damping
Ratio Z

real Damping ratio in Z direction

8.2.12 Matrix2

The Matrix2 type variable is used to record a two-dimensional array.

Parameter Data type Parameter Meaning
Matrix2
Name

string Array name

8.2.13 Matrix3

The Matrix2 type variable is used to record a two-dimensional array.

Parameter Data type Parameter Meaning
Matrix3
Name

string Array name

8.2.14 Matrix4

The Matrix2 type variable is used to record a two-dimensional array.

Parameter Data type Parameter Meaning
Matrix4
Name

string Array name

8.2.15 Matrix9

The Matrix2 type variable is used to record a two-dimensional array.

Parameter Data type Parameter Meaning
Matrix9
Name

string Array name

Chapter 9 Calibration

This chapter will describe the joint coordinate system, world coordinate system, user

coordinate system, tool coordinate system and their usage.

9.1 Joint coordinate system

The joint coordinate system or joint space refers to the independent movement of

robot joints, which is called joint motion.

Version V1.0 Copyright @ Estun Codroid 113

9.2 World coordinate system

The Cartesian coordinate system of the Codroid robot is a right-handed coordinate

system, and its Euler angle format is X-Y-Z fixed angles. For example, the pose [900mm,

200mm, 1200mm, 20°, 30°, 45°] means that it first moves to the position of x=900mm,

y=200mm, z=1200mm in the reference coordinate system, and then rotates the end TCP

point as the center of rotation. First, it rotates the end along the X-axis of the reference

coordinate system by 20°, then rotates the end along the Y-axis of the world coordinate

system by 30°, and finally rotates the end along the Z-axis of the world coordinate system

by 45°.

When leaving the factory, the robot is by default located at the position [0, 0, 0, 0, 0, 0] in

the world coordinate system, meaning that the pose of the robot's base coordinate

system coincides with that of the world coordinate system. The base of the robot is

oriented such that the Y-axis points in the negative direction and the Z-axis points

Version V1.0 Copyright @ Estun Codroid 114

towards the interior of the base in the robot's base coordinate system.

The installation of the robot can be selected from preset installation methods or

customized with its installation offset and installation rotation relative to the world

coordinate system.

9.3 Coordinate System and Calibration

Users can define the coordinate system. The user-defined coordinate system is offset

based on the world coordinate system. The offset values can be directly input by users on

the settings page or determined through the calibration function with assistance.

When it is necessary to calibrate the user coordinate system, the "Coordinate System

Calibration" assistant can be used to create it.

Version V1.0 Copyright @ Estun Codroid 115

9.3.1 Three-point calibration method

Define the origin, the direction of the x+ axis and the direction of the y+ axis. The plane

is defined by the right-hand rule, so the z+ axis is the cross product of the x+ axis and

the y+ axis.

9.3.1.1 Start calibration

Define the origin of the user coordinate system. Move the robot's TCP to the origin of

the coordinate system to be defined by point-to-point motion, click and

then proceed to the next step.

，

Version V1.0 Copyright @ Estun Codroid 116

2. Define the positive x-direction of the user coordinate system. Move the robot's TCP

to the positive x-direction of the coordinate system to be defined and click

then proceed to the next step.

3. Define the y+ direction of the user coordinate system. Move the robot's TCP to the y

positive direction of the coordinate system to be defined and click Then next

step.

9.3.1.2 Calibration successful

After clicking the confirmation button, the specific values of the successfully calibrated

coordinate system will be automatically filled in the selected coordinate system number.

Version V1.0 Copyright @ Estun Codroid 117

9.3.1.3 Calibration failed

If the calibration result does not show any values and indicates calibration failure, please

recalibrate and note that among the three points defined for calibration, namely the

origin and x+ and y+, avoid having two or more identical points.

9.3.1.4 List of coordinate systems

In the Tools, Load, and Coordinate System options in the settings interface, all coordinate

systems are recorded. Here, you can view or edit the values.

9.3.2 Use the user coordinate system

9.3.2.1 Use the user coordinate system when jogging.

When performing point-by-point movement of the robot at the end, you can choose to

move along the current coordinate system. If the current coordinate system is selected as

the user coordinate system, the point-by-point movement can be carried out along the

Version V1.0 Copyright @ Estun Codroid 118

user coordinate system.

9.3.2.2 Switching coordinate systems in the program

Add the SetCoord command in the program tree and select the defined user coordinate

system from the drop-down menu of "Coordinate System".

9.4 Tools and Calibration

Users can create new tool variables. The tool coordinate system is offset based on the

default tool coordinate system (NOTOOL) at the end of the flange. The offset values can

be directly input by the user or determined through auxiliary calibration. The origin of the

default tool coordinate system is located at the center of the flange end, with the Z-axis

pointing outward from the flange and the Y-axis pointing towards the installation

locating pin hole.

Version V1.0 Copyright @ Estun Codroid 119

When it is necessary to calibrate the tool coordinate system, the four-direction

calibration method of "Tool Calibration" can be used to assist in calculating the position

offset, or the one-point calibration method can be used to assist in calculating the

rotation angle.

9.4.1 Four-direction calibration method

Manually move the robot (by point-to-point or dragging) to four different poses. Each

time, make the tool tip touch the same needle tip placed in space and click the

"Direction Teaching" button. After completing the four poses, the offset value of TCP

relative to the center of the tool output flange can be obtained.

Version V1.0 Copyright @ Estun Codroid 120

9.4.1.1 Start calibration

a) The mobile robot brings the TCP (Tool Center Point) into contact with the tip of the

needle placed in space.

b) Click the (orientation 1 teaching) button to record the current

actual robot position.

c) Click button (next) to repeat steps 1 and 2 until the fourth point, then

click button (OK) to complete the direction instruction.

9.4.1.2 Calibration succussed

After clicking the "Confirm" button, the x, y, and z values of the successfully calibrated

tool will be automatically filled in the selected tool number.

Version V1.0 Copyright @ Estun Codroid 121

9.4.1.3 Calibration failed

If the "Calibration TOOL" window shows no result and prompts "4-point calibration

failed", it indicates that the calibration has failed.

Please start the calibration again and make sure that:

 the four pose changes are large enough

 the needle tips are aligned (the tool center point is in sufficient contact with the

needle tips in space).

9.4.2 One-point calibration method (attitude)

After completing the four-direction calibration method (to obtain the translational

relationship of the TCP relative to the center of the tool output flange), the certain

calibration method (attitude) can be started to obtain the rotational relationship of the

TCP relative to the center of the tool output flange.

Version V1.0 Copyright @ Estun Codroid 122

9.4.2.1 Start calibration

Move the robot so that the desired tool coordinate system orientation coincides with

the robot's world coordinate system orientation, and click the (orientation

teaching) button to complete the Orientation Teaching.

9.4.2.2 Calibration results

When calibrating the posture, the robot cannot verify the accuracy. The user can visually

check by manually moving the tool coordinate system.

After obtaining the translation and rotation of the TCP (Tool Center Point) relative to the

center of the tool output flange through the execution of the "Four-Point Calibration

Method" and the "One-Point Calibration Method (Attitude)", a complete tool

coordinate system is established, and the calibration is completed.

Version V1.0 Copyright @ Estun Codroid 123

9.4.3 Use the tool coordinate system

9.4.3.1 Use the tool coordinate system when jogging.

When performing point-to-point movement of the robot at the end, you can choose to

move along the tool coordinate system. Select the current tool as the target tool

coordinate system to move along the tool coordinate system. The current tool can be

switched in the Settings tab.

9.4.3.2 Tools used in the program

Add the "SetTool" instruction in the program tree and select the defined tool

parameters from the drop-down menu.

Version V1.0 Copyright @ Estun Codroid 124

Version V1.0 Copyright @ Estun Codroid 125

Chapter 10 Instruction Introduction

10.1 Displacement Instructions

10.1.1 MovJ

This is joint movement. This instruction indicates that the robot's joints perform point-to-

point motion, and the end trajectory of the robot is an irregular curve. Double-click the

added MovJ instruction or select the parameters in the programming instruction details

area and click MovJ to configure the instruction parameters.

Parameter Description
Target position Points that have been shown and taught can be selected in the

Target Position option; only APOS and CPOS can be added.
Target speed Set as a SPEED type variable, you can choose the system

predefined value or create your own; where the target speed is a
percentage.

Acceleration See Variable Management for details on creating and setting
variables of type SPEED.

Transition Type Set the variable as ACC, you can choose the predefined value or
create it by yourself;

Transition
Value

See Variable Management for details on creating and setting
variables of type ACC.

10.1.2 MovL

The MovL instruction is a linear motion command. By using this command, the TCP point

Version V1.0 Copyright @ Estun Codroid 126

of the robot can move linearly to the target position at the set speed. If the starting and

ending postures of the movement are different, the posture will rotate synchronously with

the position to the ending posture during the movement. Compared with joint motion,

linear movement may pass through singular points. Double-click the added MovL

instruction or select the parameters in the programming instruction details area and click

MovL to configure the instruction parameters.

Parameter Description
Target position Points that have been shown and taught can be selected in the

Target Position option; only APOS and CPOS can be added.
Target speed Set as SPEED type variable, you can choose the system predefined

value or create it by yourself; in which, the target speed is an
absolute value, unit mm/s.

Acceleration The creation and setting of SPEED type variables are described in
the Variables section.

Transition Type The ACC variable can be predefined by the system or created by
yourself;

Transition
Value

See the Variable Management section for details on creating and
setting variables of type ACC.

10.1.3 MovC

The completion of an arc instruction must involve three poses, and the positions of these

three poses in space must not be on the same straight line. When using this instruction,

the robot's TCP point moves in an arc from the starting position through the intermediate

position to the target position. The starting position is the end point of the previous

movement instruction. When using the MoveC instruction, if the starting and ending

poses are different, the pose will rotate synchronously with the position during the

movement to reach the ending pose, but it may not pass through the intermediate pose.

Compared with joint movement, arc movement may pass through singular points.

Double-click the added MoveC instruction or select the parameters in the programming

instruction details area and click MoveC to configure the instruction parameters.

Version V1.0 Copyright @ Estun Codroid 127

Parameter Description
Intermediate
position

The position of the middle auxiliary point of the arc, the type can
only be APOS or CPOS.

Target position The position of the end point of the arc, the type can only be
APOS or CPOS.

Target speed Set as SPEED variable, you can choose the system predefined
value or create it by yourself; in which, the target speed is an
absolute value, the unit is mm/s.

Acceleration The creation and setting of SPEED type variables are described in
the Variables section.

Transition Type The ACC variable can be predefined by the system or created by
yourself;

Transition
Value

See the Variable Management section for details on creating and
setting variables of type ACC.

10.1.4 MovCircle

The full circle instruction refers to the movement of the robot's TCP point from the

starting position to the target position via an intermediate position, with the three

positions in the pose space not being collinear. When using this instruction, the robot's

TCP point performs a full circle movement from the starting position to the target

position via the intermediate position, and the posture remains unchanged during the full

circle movement. Compared with joint movement, the full circle movement may pass

through singular points. Double-click the added MovCircle instruction or select the

parameters in the programming instruction details area and click MoveCircle to configure

the instruction parameters.

Version V1.0 Copyright @ Estun Codroid 128

Parameter Description
Intermediate
position

The position of the middle auxiliary point of the arc, the type can
be APOS or CPOS.

Target position The position of the end point of the arc, the type can be APOS or
CPOS.

Target speed Set as SPEED type variable, you can choose the system predefined
value or create it by yourself; among them, the target speed is an
absolute value, unit mm/s.

Acceleration The creation and setting of SPEED type variables are described in
the Variables section.

Transition Type The ACC variable can be predefined by the system or created by
yourself;

Transition
Value

For details on the creation and setting of ACC type variables, see
Variable Management.

10.1.5 MovJRel

MovJRel is an interpolation relative offset instruction. This instruction always takes the

current robot position or the target position of the previous motion instruction as the

starting position, and then the robot moves relatively by the specified offset.

Version V1.0 Copyright @ Estun Codroid 129

Parameter Description
Target Relative
Position

The position increment that the robot is to move when executing
this command can only be added to DAPOS.

Target speed The setting is a variable of type SPEED, which can be either a
system predefined value or created by yourself; where the target
speed is a percentage.

Acceleration See the Variables section for details on creating and setting
variables of type SPEED.

Transition Type Set the variable to ACC, which can be predefined by the system or
created by yourself;

Transition
Value

See the Variable Management section for details on creating and
setting variables of type ACC.

10.1.6 MovLRel

MovLRel interpolation relative offset instruction. This instruction always takes the current

robot position or the target of the previous motion instruction as the reference.

The position is the starting position, and then the robot performs an offset movement

relative to the coordinate system or the tool.

Version V1.0 Copyright @ Estun Codroid 130

Parameter Description

Target position The position increment that the robot is to move when this
command is executed can only be added to the DCPOS.

Reference
coordinates

Coordinate system offset or tool offset selection;

Target speed - Coord: offset relative to the current user coordinate system;
Acceleration - Tool: offset relative to the tool coordinate system, i.e. reference

Tx, Ty, Tz translation or rotation.
Transition type Set as SPEED type variable, you can choose the system predefined

value or create it by yourself; among them, the target speed is the
absolute value, the unit is mm/s.

Transition
value

The creation and setting of SPEED type variables are described in
the Variables section.

10.1.7 MovLSearch

The positioning command refers to performing IO detection or torque detection when

executing this MovL command.

Version V1.0 Copyright @ Estun Codroid 131

Parameter Description
Target position You can select the points that have been shown and taught in the

target position option; only APOS and CPOS can be added,
DAPOS and DCPOS are not selectable.

Target speed Set as SPEED type variable, you can choose the system predefined
value or create it by yourself; among them, the target speed is the
absolute value, unit mm/s.

Acceleration The creation and setting of SPEED type variables are described in
the Variables section.

Detection Type The ACC variable can be predefined by the system or created by
yourself;

Trigger Index For details on the creation and setting of ACC type variables, see
the Variable Management.

Trigger Value DITrig: Physical digital IO input detection.
Deceleration
time

AITrig: Physical analog IO input detection.

Return Value For InputTrig, this parameter indicates the IO port number to be
detected.

Successful
position

For TorqTirg, this parameter indicates the axis number to be
detected.

Jump node For InputTrig, the threshold for IO detection. For TorqTirg, the
threshold for torque detection in thousandths of the rated torque.

10.1.8 AddDo

The AddDO instruction must be placed after motion instructions, including MovJ, MovL,

MovC, MovCircle, MovJRel, and MovLRel. This instruction is mainly used to ensure that the

transition between two motion instructions is not interrupted. If AddDO is added between

two motion instructions, the IO operations in its sub-controls will not interrupt the transition;

otherwise, the transition value of the previous motion instruction will not take effect.

Version V1.0 Copyright @ Estun Codroid 132

After the robot has executed this instruction, it can perform IO operations. The AddDO

instruction must have sub-controls added, and the sub-controls can only be: SetDO, SetAO,

SetSimDO, SetSimAO, SetDO8421, SetSimDO8421.

10.1.9 MovTraj

Run the specified drag trajectory. Before running the trajectory, the robot must be at the

starting point of the trajectory. You can use the GetTrajStartPoint instruction to obtain the

starting point position and use the MovJ instruction to move to that point.

Parameter Description
Trajectory The track to be run.
Speed
multiplier

The running speed multiplier to run the trajectory, based on the
speed at the time of dragging and dropping.

To run a trajectory you can use the button on the shortcut menu bar to open the

trajectory editor. After clicking “Enable Trajectory Recording”, press the button of Drag &

Drop in manual mode to start recording the robot's trajectory, release the button to stop

recording, and click the Save button to save the most recent drag & drop trajectory. After

selecting a trajectory, long press “Run to Start” to run to the starting point of the

trajectory, and long press “Run Trajectory” to run the trajectory.

10.2 Logical Instructions

10.2.1 GoTo

The GOTO instruction is used to jump to different parts of a program.

10.2.2 If

The IF instruction is used for conditional judgment expression jump control, and the

result of its judgment expression must be of type Bool. When the result of the conditional

judgment expression is true, the program executes the content of the program block

under the IF.

Version V1.0 Copyright @ Estun Codroid 133

In the figure, 1 represents the overall expression, and you can add expressions by

selecting the + sign in the 3 boxes within the frame. 2 is the expression currently being

edited. The parameter editing of the expression is as follows:

Expression type Description
value Includes constant values and variable values. Constant values

currently only support numeric quantities with true and false, while
variables can choose from the basic variables provided, and
currently include all IO signals.

operator Operators include logical operators with or without and various
math operators such as addition, subtraction, multiplication and
division.

function Provide commonly used math functions including sine, cosine,
integer, remainder and other functions.

10.2.3 ElseIf

The ELSIF instruction depends on the IF instruction and follows immediately after the IF

control. When the IF logic is not satisfied, the ELSIF logic is evaluated. The method of

setting the ELSIF expression is the same as that of setting the IF expression.

Version V1.0 Copyright @ Estun Codroid 134

10.2.4 Otherwise

The ELSE instruction depends on the IF or ELSIF instruction and follows immediately after

the IF or ELSIF control. It is executed when the conditions of the IF or ELSIF instructions

are not met. The ELSE instruction has no parameter configuration.

10.2.5 While

The WHILE instruction repeatedly executes the sub-statement when the condition is met.

The loop control expression must be of the BOOL type.

The parameters of the expression are edited as follows:

Version V1.0 Copyright @ Estun Codroid 135

Expression type Description
value Includes constant values and variable values. Constant values

currently only support numeric quantities with true and false, while
variables can choose from the basic variables provided, and
currently include all IO signals.

operator Operators include logical operators with or without and various
math operators such as addition, subtraction, multiplication and
division.

function Provide commonly used math functions including sine, cosine,
integer, remainder and other functions.

10.2.6... =...

Create an expression to assign a value to a certain variable. Currently, the assignment

instruction supports assigning values to all IO and variables of INT, BOOL, and REAL

types. Its configuration interface is as follows:

10.2.7 RETURN

Version V1.0 Copyright @ Estun Codroid 136

Return instruction. Generally, after executing this instruction, the program jumps to the

end of the program. If the RETURN instruction is used in a subroutine called by the CALL

instruction, it returns to the program one level above the CALL instruction. For example, if

the RETURN instruction is used in a subroutine called by the main program, it will return

to the main program.

10.2.8 CALL

The call instruction makes the current program jump to another subroutine within the

same project. After the subroutine is executed, it jumps back to the current program.

Clicking on the name of the current program will bring up a drop-down menu where you

can switch the currently edited program.

10.2.9 RUN

The sub-task parallel running instruction enables the robot to run sub-tasks in parallel

while performing the main task. The tasks to be run must be in the same project.

10.2.10 KILL

The instruction to stop concurrently running programs (tasks) enables the robot to halt

other programs while running the current one, and the programs to be stopped must

be in the same project and in a running state.

10.2.11 Labeling

Version V1.0 Copyright @ Estun Codroid 137

The Label instruction is used to define the target for GOTO jumps.

10.3 Flow Control Instructions

10.3.1 Wait

It is used to set the waiting time for the robot, with the time unit being milliseconds and

it can be of the int constant type.

10.3.2 WaitFinish

It is used to synchronize the robot's movement and program execution. The robot will

directly transition to execute the next instruction when the previous instruction reaches

the trigger progress. When adding the WaitFinish instruction, sub-controls must be

added. Sub-controls can be SetDO or SetAO and their similar instructions. As shown in

the example program, the SetDO instruction will be triggered when the first MovL

instruction reaches 20% of its execution. After the first MovL instruction is completed, it

will directly transition to execute the second MovL instruction. If the WaitFinish instruction

is deleted, the SetDO will be executed after the first MovL instruction is completed, and

then the second MovL instruction will be executed. In this case, there is no transition

between the two MovL instructions, and there will be a pause.

Parameter Description
Trigger progress Percentage of runtime when the previous move instruction triggers a child

control in WaitFinish.

10.3.3 WaitCondition

Version V1.0 Copyright @ Estun Codroid 138

Set the conditions for the robot to wait. If the conditions are not met within the set time,

a timeout status will be returned. The next instruction will be executed only when the

"discrimination condition" is true; otherwise, the program will continue to wait until the

expression is true.

Parameter Description
Time The amount of time, in ms, required to execute the wait.
Timeout value If the value of this parameter is 0, it will force the system to wait

until the discriminant condition is true before continuing to execute
the next instruction.

Jump Node If the value of this parameter is non-zero, the system will skip the
instruction and continue to execute the next instruction after
waiting for the given amount of time, even if the discriminating
condition is still not true.

Conditional
expression

Select a variable and assign a value to it under the following two
conditions.

10.4 IO Instructions

10.4.1 SetDO

Set the digital output ports to the TRUE (1) or FALSE (0) state. Here, DO0-DO15 represent

the 16 digital output ports of the control cabinet, DI0-DI15 represent the 16 input ports

of the control cabinet, and switch0-switch3 indicate the status of the buttons at the

robot's end effector.

Version V1.0 Copyright @ Estun Codroid 139

Parameter Description
Port Sets the port number of the digital output DO.
Setting value Sets the port value, with 0 indicating a high level and 1 indicating

a low level.

10.4.2 SetAO

Set the analog output ports (AO0-AO3) to a certain value within the range of 4mA to

20mA.

Parameter Description
Port Sets the port number of the digital output AO.
Setting value Set port value, only current is supported, range 4mA-20mA

10.4.3 WaitDI

This instruction is used to wait for the status of a digital input (DI) port for a specified

duration. If the waiting condition is met within the set duration, the program continues to

execute downward; if the condition is not met within the set duration, the timeout

judgment value is set to 1 and the program jumps to the jump node.

https://cn.bing.com/dict/search?q=setting&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=value&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=setting&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=value&FORM=BDVSP6&cc=cn

Version V1.0 Copyright @ Estun Codroid 140

Parameter Description
Port Variables Input port number to wait for.
Port Value Digital input port level to wait for.
Duration (ms) The unit of time to wait for the signal to change is ms.
Timeout value Return the result of instruction execution to the variable set in the

timeout value, the timeout value variable can only be INT type
variable.

Jump node When a signal is successfully waited for within the waiting time, the
running value of the timeout value will be set to 0;

10.4.4 WaitDI8421

This instruction is used to wait for a combination of states of a group of consecutive

digital input (DI) ports within a specified duration. If the waiting condition is met within

the set duration, the program continues to execute downward; if the condition is not met

within the set duration, the timeout judgment value becomes 1, and the program jumps

to the jump node.

Version V1.0 Copyright @ Estun Codroid 141

Parameter Description
Starting Port Starting port number of the continuous DI port for the segment,

indicating the low bit of the 8421 conversion value
End Port End port number of the continuous DI port for the segment.

Indicates the high bit of the 8421 conversion value
Time(ms) The length of time to wait for the DI signal of this group of digital

inputs, which can be of int constant type in ms.
8421 Value Convert the value of this segment of consecutive DI ports to a

decimal number according to the 8421 rule, and the condition is
considered satisfied if it is equal to the VALUE value.

Timeout value For example, if the start port is 0 and the end port is 2, and the
8421 value is set to 4, the condition is said to be satisfied when DI0
is 0, DI1 is 0, and DI2 is 1.

Jump Node The result of the instruction execution is returned to the variable set
in the timeout value, and the timeout value variable can only be an
INT type variable.

10.4.5 WaitAI

This instruction is used to wait for the status of an analog input (AI) port for a specified

duration. If the waiting condition is met within the set duration, the program continues to

execute downward; if the condition is not met within the set duration, the timeout

judgment value is set to 1 and the program jumps to the jump node.

Parameter Description
Port Variables The analog input port number to be waited for.
Port Value The analog input port current value (4mA-20mA) to wait for.
Duration (ms) The unit of time to wait for signal conversion is ms.
Timeout value Returns the result of command execution to the variable set in the

timeout value, which can be an INT type variable only.
Jump node When a signal is successfully waited for within the waiting time, the

running value of the timeout value will be set to 0;

10.4.6 GetDI8421

Version V1.0 Copyright @ Estun Codroid 142

This command is used to obtain the status of a continuous section of DI ports (treated as

binary data) and return it as a decimal number.

Parameter Description
Starting Port Start DI port number you want to acquire, the lowest bit of the

8421 value.
End Port The end DI port number you want to get, the highest bit of the

8421 value.
Return Value INT type variable, the program runtime will get the port status in

binary to decimal conversion and then pass into the int variable.

10.4.7 GetDO8421

This command is used to obtain the status of a continuous section of DI ports (treated as

binary data) and return it as a decimal number.

Parameter Description
Starting Port Start DO port number you want to acquire, the lowest bit of the

8421 value.
End Port The end DO port number you want to get, the highest bit of the

8421 value.
Return Value INT type variable, the program runtime will get the port status in

binary to decimal conversion and then pass into the int variable.

10.4.8 SetDO8421

Set a continuous DO port status (regard it as a binary data segment), and convert the

input decimal number into a binary number to set it on the specified DO port.

Version V1.0 Copyright @ Estun Codroid 143

Parameter Description
Starting Port The low bit when the desired value is transmitted in binary.
End Port The high bit when the desired setting value is transmitted in

binary.
Return Value The decimal setting value of the desired port output.

10.4.9 GetDO

This command is used to obtain the status of the DO port and return it as a binary

number.

Parameter Description
Port The DO port from which you want to get the value.
Variable The binary value that you want the port to output.

10.4.10 GetDI

This command is used to obtain the status of the DI port and return it as a binary number.

Parameter Description
Port The DI port from which you want to get the value.
Variable The binary value that you want the port to output.

10.4.11 GetAO

Version V1.0 Copyright @ Estun Codroid 144

This command is used to obtain the status of the AO port and return it as a decimal

fraction.

Parameter Description
Port The AO port that needs to get the value.
Variable Decimal decimal value of the desired port output.

10.4.12 GetAI

This command is used to obtain the status of the AI port and return it as a decimal

fraction.

Parameter Description
Port The AI port that needs to get the value.
Variable The binary value that you want the port to output.

10.5 Set instructions

10.5.1 SetTool

Set the tool parameter command. Switch to this tool parameter.

Parameter Description
Tool param Change to the selected tool number.

Version V1.0 Copyright @ Estun Codroid 145

10.5.2 SetCoord

Set the user coordinate system command. Switch to this user coordinate system.

Parameter Description
Coordinate
system

Changed to select the variable number of the coordinate system that has
been created for the selection.

10.5.3 SetPayload

Select the workpiece load parameter instruction. Switch to this workpiece load parameter.

Parameter Description
Workpiece Load Change to Select to select the load variable number that has been

created.

10.5.4 Stop

This command is used to stop the execution of all active programs.

10.5.5 EnaVibraSuppr

This command is used to enable vibration suppression.

10.5.6 DisVibraSuppr

This command is used to disable the servo vibration suppression.

10.5.7 ClsDectLevel

This command is used to set the sensitivity of collision detection.

Version V1.0 Copyright @ Estun Codroid 146

10.6 Position Operation Instructions

10.6.1 GetCurAPos

This instruction is used to obtain the current position in the joint coordinate system and

assign it to an Apos type variable. You can click on +APOS to add an Apos type variable.

Parameter Description
Storage location Current Apos value variable.

10.6.2 GetCurCPos

This command is used to obtain the Cartesian space position in the current reference

coordinate system and assign it to a variable of type Cpos. You can click +CPOS to add a

variable of type APos.

Parameter Description
Storage location Current Cpos value variable.

10.6.3 APosToCPos

The robot position point conversion instruction, given the APos point under the base

coordinate system, and the reference coordinate system and tool parameters of the

target CPos point to be converted, can get the value of the CPos point with tool

parameters under the target coordinate system.

Version V1.0 Copyright @ Estun Codroid 147

Parameter Description
Pre-conversion
point

Apos variable before conversion

Points after
conversion

Cpos variable after conversion

Tool
parameters

Tool number involved in the conversion

Coordinate
system

Coordinate system number involved in the conversion

10.6.4 CPosToAPos

The robot position point conversion instruction, given the CPos point and the reference

coordinate system and tool parameters it belongs to, can obtain the value of the target

APos point.

Parameter Description

Conversion
front point

Cpos variables before conversion

Tool
parameters

Tool number involved in the conversion

Coordinate
system

Coordinate system number involved in the conversion

Version V1.0 Copyright @ Estun Codroid 148

Converted
point

Apos variable after conversion

10.6.5 CPosToCPos

The robot position point conversion instruction, given the CPos point and its reference

coordinate system and tool parameters, as well as the reference coordinate system and

tool parameters of the target CPos point to be converted, can obtain the value of the

target CPos point.

Parameter Description
Convert Pre-
Points

Cpos variables before conversion

Target tool
parameters

Tool number involved in Cpos before conversion

Target user
coordinate
system

Coordinate system number of Cpos before conversion

Post-
transformation
point

Apos variable after conversion

Baseline tool
parameters

Tool number of Cpos after conversion

User
coordinate
system

Coordinate system number of Cpos after conversion.

10.6.6 ToolOffset

The robot tool coordinate system offset instruction allows for the generation of a new tool

coordinate system by rotating or offsetting the reference tool coordinate system. Given the

reference tool coordinate system TOOL and the offset or rotation amount required, the

value of the target tool coordinate system can be obtained.

Version V1.0 Copyright @ Estun Codroid 149

Parameter Description
Tool
Parameters

Tool TCP parameter before offset

Offset Offset DCpos parameters
Tool
Parameters

Tool TCP parameters after offset

10.6.7 UserOffset

The robot user coordinate system offset instruction allows for the generation of a new user

coordinate system by rotating or offsetting the reference user coordinate system. Given

the reference user coordinate system USERCOORD and the offset or rotation amount

required, the value of the target user coordinate system can be obtained.

Parameter Description
Coordinate
system

Coordinate system parameters before offset

Offset Offset DCpos parameter
Coordinate
system

Coordinate system parameter after offset

10.6.8 CposOffset

The robot Cpos offset command allows for the generation of a target Cpos by rotating or

offsetting the original Cpos.

Version V1.0 Copyright @ Estun Codroid 150

Parameter Description

Coordinate
system

Cpos parameter before offset

Offset Offset DCpos parameter

Coordinate
system

Cpos parameter after offset

10.6.9 GetAxis

This command is used to obtain the angle of the specified axis.

Parameter Description

Origin Selected Apos

Axis Selected axis number

Angular value Angular value

10.6.10 GetCartesian

This command is used to obtain the specified Cartesian pose values.

Version V1.0 Copyright @ Estun Codroid 151

Parameter Description

Origin Selected Cpos

Axis Selected direction or angle

Stored value Value

10.6.11 Position Inverse

This instruction is used to calculate the inverse of the pose transformation.

Parameter Description

Origin Position inversion to original position

Stored point Position inversion to resultant position

10.6.12 PointsDistance

This instruction is used to calculate the distance between two pose points.

Version V1.0 Copyright @ Estun Codroid 152

Parameter Description

Origin Starting Position

Stored point End Position

Distance Distance between two attitude points

10.6.13 InterpolationCpos

This instruction is used to calculate the pose interpolation between the start point and

the end point.

Parameter Description
Beginning
point

Starting Position

End point End position
Coefficient Interpolation factor, interval 0~1, 0 is the starting point, 1 is the

end point
Stored point Position interpolation result position

10.6.14 TransformPlane

This instruction performs a transformation in the XY(YZZX) plane. At the base point, it first

Version V1.0 Copyright @ Estun Codroid 153

rotates around the Z(XY) axis, then translates along the X(YIZ) axis, and finally along the

Y(ZIX) axis. Position variables, array variables, or taught points can be dragged into the

base point, and the storage point is the pose after the transformation.

Parameter Description
Primitive point primitive point
Plane The plane in the point's coordinate system
Angle of
rotation

Rotation angle along the selected plane

Translation in
the ___
direction

Translation distance in both directions of the selected plane

Stored Points Resulting point variable

10.6.15 GetTrajStartPoint

This instruction is used to obtain the starting point of the drag trajectory.

Parameter Description
Trajectory Selected trajectory
starting point Point storage

Version V1.0 Copyright @ Estun Codroid 154

10.6.16 GetTrajEndPoint

This instruction is used to obtain the end point of the drag trajectory.

Parameter Description
Trajectory Selected trajectory
End point Point storage

10.7 Bitwise Operation Instructions

10.7.1 BitAnd

This instruction performs a bitwise AND operation on two operands and assigns the result

to the first operand.

Parameter Description
Operand 1 INT variable; the result of the operation is also assigned to this

operand
Operand 2 INT variable

10.7.2 BitNeg

Implement the bitwise NOT operation. This instruction performs a bitwise NOT operation

on the operand and assigns the result back to the operand.

Version V1.0 Copyright @ Estun Codroid 155

Parameter Description
Operand 1 INT variable; the result of the operation is also assigned to this

operand

10.7.3 BitOr

Implements the operation of bitwise or. This instruction performs a bitwise or operation

on two operands and assigns the result to the first operand.

Parameter Description
Operand 1 INT variable; the result of the operation is also assigned to this

operand
Operand 2 INT variable

10.7.4 BitLSH

This instruction performs a bitwise left shift operation. The first operand is shifted left by

the number of bits specified by the second operand, and the result is assigned back to

the first operand.

Parameter Description
Operand 1 INT variable; the result of the operation is also assigned to this

operand
Operand 2 INT variable

Version V1.0 Copyright @ Estun Codroid 156

10.7.5 BitRSH

Implement the bitwise right shift operation. This instruction performs a bitwise right shift

on the first operand by the number of bits specified by the second operand and assigns

the result back to the first operand.

Parameter Description
Operand 1 INT variable; the result of the operation is also assigned to this

operand
Operand 2 INT variable

10.8 Clock Instruction

When using clock instructions, a variable of type CLOCK needs to be created.

10.8.1 CLKStart

Start the specified clock (After starting, you can see from the variable list that the state of

the specified clock variable is true and the value is the recorded time).

10.8.2 CLKStop

Stop the specified clock (its state is false, but it will not be reset).

Version V1.0 Copyright @ Estun Codroid 157

10.8.3 CLKReset

Reset the state value of the specified clock.

10.9 Socket Command

10.9.1 SocketCreate

Create a socket client to facilitate data interaction with the server. Based on the

parameters passed from the server side, create a client locally and establish a connection

with the server.

Parameter Description
Socket Name The name of the socket to be created, this value is passed as a

socket variable.
IP address The ip address of the server to connect to
Port number The port number of the server to connect to.
Return Value The return value variable for whether the operation was successful,

a value of 0 indicates success, a value of 1 indicates failure. If the
socket has already been created, it returns 1. This operation does
not indicate whether communication is established.

Version V1.0 Copyright @ Estun Codroid 158

10.9.2 SocketClose

Close the previously created socket client. Based on the passed-in socket name, close the

created client and return the success or failure of the operation.

Parameter Description
Socket Name The name of the socket to be closed, this value is passed in as a

socket variable.
Return Value A value of 0 indicates success, while a value of 1 indicates failure.

10.9.3 SocketSendStr

Send a string to the server side for command interaction. Send a string to the already

established server connection and return whether it is successful or not.

Parameter Description
Socket Name The name of the socket on which the send operation is to be

performed, passed as a socket variable.
Send The string of data to be sent to the server.
Return Value The return value of whether the operation is successful or not, a

return value of 0 means success, a return value of 1 means failure.
End of newline Whether to add “\n” line breaks.

10.9.4 SocketSendReal

Send the real array to the server side for command interaction. Send the real array to the

already established server connection and return whether it is successful or not. The

starting and ending characters of the sent string can be customized, and the data is

Version V1.0 Copyright @ Estun Codroid 159

separated by a delimiter.

Parameter Description
Socket Name The name of the socket on which the send operation should be

performed, this value is passed as a socket variable.
Send The real array of data to be sent to the server.
Return Value The return value of whether the operation is successful or not, a

value of 0 means success, a value of 1 means failure.
Start String Start String
End String End string
Separator Separator between data
End of line
break

Whether to add “\n” line breaks.

10.9.5 SocketSendInt

Send an int array to the server side for command interaction. Send an int array to the

already established server connection and return whether it is successful or not.

Parameter Description

Version V1.0 Copyright @ Estun Codroid 160

Socket Name The name of the socket on which the send operation should be
performed, this value is passed as a socket variable.

Send The int array of data to be sent to the server.
Return Value The return value of whether the operation is successful or not, a

value of 0 means success, a value of 1 means failure.
Start String Start String
End String End string
Separator Separator between data
End of line
break

Whether to add “\n” line breaks.

10.9.6 SocketReadReal

Read the string sent from the server and store it in the form of a real array. Wait and

receive the string sent from the server, which is in the format of start and end strings, with

data separated by delimiters. After receiving the string, the robot system will split and

parse it and store it in the array in sequence.

Parameter Description
Socket name The name of the socket on which the read operation is to be

performed, passed as a socket variable.
Number of
data

The number of sockets to read into the array.

Data return
value

Stores the read and converted values into the array variable and
returns the array variable.

Detection time Waiting time for the server to send the data. Timeout alarm.
Return Value The return value of whether the operation is successful or not, a

return value of 0 means success, and a return value of 1 means
failure.

Start String Start String
End String End string
Separator Separator between data.

Version V1.0 Copyright @ Estun Codroid 161

10.9.7 SocketReadInt

Read the string sent from the server and store it in the form of an int array. Wait and

receive the string sent from the server, which is in the format of start and end strings, with

data separated by delimiters. After receiving the string, the robot system will split and

parse it and store it in the array in sequence.

Parameter Description
Socket name The name of the socket on which the read operation is to be

performed, passed as a socket variable.
Number of
data

The number of sockets to read into the array.

Data return
value

Stores the read and converted values into the array variable and
returns the array variable.

Detection time Waiting time for the server to send the data. Timeout alarm.
Return Value The return value of whether the operation is successful or not, a

return value of 0 means success, and a return value of 1 means
failure.

Start String Start String
End String End string
Separator Separator between data.

10.9.8 SocketReadStr

Read the string sent from the server and store it in the form of a string. Wait and receive

the string sent from the server, which is in the format of start and end strings and string

data. After receiving the string, the robot system will split and parse it and store it in

character variables.

Version V1.0 Copyright @ Estun Codroid 162

Parameter Description
Socket Name The name of the socket on which the read operation should be

performed, passed as a socket variable.
Data return
value

The string data sent from the server, the value is returned as a
string variable.

Detection time Waiting time for the server to send the data. Timeout alarm.
Return Value The return value of whether the operation is successful or not, a

value of 0 means success, a value of 1 means failure.
Start String Start String
End String End String

10.10 Interrupt Instruction

10.10.1 IConnect

This instruction is used to create an interrupt identifier and connect an interrupt task.

Parameter Description
Interrupt ID ID name
Tasks Task called

10.10.2 IDelete

Version V1.0 Copyright @ Estun Codroid 163

This command is used to disconnect the interrupt name from the interrupt task.

Parameter Description
Interrupt ID ID name
Tasks Task called

10.10.3 ITimer

This instruction is used to trigger an interrupt at a specified time.

Parameter Description
Interrupt ID ID name
Tasks Interval trigger time

10.10.4 ICondition

This instruction is used to execute an interrupt when the conditions are met.

Version V1.0 Copyright @ Estun Codroid 164

Parameter Description
Interrupt ID ID name
conditional
expression

When the expression satisfies the condition, an interrupt will be
executed

10.11 Modbus Commands

10.11.1 GetModConState

This command is used to obtain the connection status of the robot's communication with

the outside world via ModbusTCP.

Parameter Description
Device name Name of the Modbus device to be operated
Connection
Status

Returns the current connection status, type BOOL

10.11.2 ReadSingleCoilReg

This command is used to read a single coil register of the specified Modbus.

Version V1.0 Copyright @ Estun Codroid 165

Parameter Description
Device name Modbus device name to be operated
Address Address of the register to be read
Destination
register value

Variable holding the value of the register to be read, type BOOL

Slave Device
Address

Address of slave device

Timeout Waiting time for reading, timeout alarm
Return Value Return value variable of whether the operation is successful or not,

a return value of 0 means success, and a return value of 1 means
failure.

10.11.3 ReadDiscretelnputReg

This command is used to read the specified discrete input registers of Modbus.

Parameter Description
Device name Modbus device name to be operated
Address Address of the register to be read
Destination
register value

Variable holding the value of the register to be read, type Int

Slave Device Address of slave device

Version V1.0 Copyright @ Estun Codroid 166

Address
Timeout Waiting time for reading, timeout alarm
Return Value Return value variable of whether the operation is successful or not,

a return value of 0 means success, and a return value of 1 means
failure.

10.11.4 ReadSingleHoldReg

This command is used to read a single holding register of the specified Modbus.

Parameter Description
Device name Modbus device name to be operated
Address Address of the register to be read
Destination
register value

Variable holding the value of the register to be read, type Int

Slave Device
Address

Address of slave device

Timeout Waiting time for reading, timeout alarm
Return Value Return value variable of whether the operation is successful or not,

a return value of 0 means success, and a return value of 1 means
failure.

10.11.5 ReadInputReg

This command is used to read the specified Modbus input registers.

Version V1.0 Copyright @ Estun Codroid 167

Parameter Description
Device name Modbus device name to be operated
Address Address of the register to be read
Destination
register value

Variable holding the value of the register to be read, type Int

Slave Device
Address

Address of slave device

Timeout Waiting time for reading, timeout alarm
Return Value Return value variable of whether the operation is successful or not,

a return value of 0 means success, and a return value of 1 means
failure.

10.11.6 WriteSingleCoilReg

This command is used to write to a single coil register of the specified Modbus.

Parameter Description
Device name Modbus device name to be operated
Address Address of the register to be written
Destination
register value

Variable holding the value of the register to be written, type BOOL

Version V1.0 Copyright @ Estun Codroid 168

Slave Device
Address

Address of slave device

Timeout Waiting time for reading, timeout alarm
Return Value Return value variable of whether the operation is successful or not,

a return value of 0 means success, and a return value of 1 means
failure.

10.11.7 WriteSingleHoldReg

This instruction is used to write to a single holding register of the specified Modbus.

Parameter Description
Device name Modbus device name to be operated
Address Address of the register to be written
Destination
register value

Variable holding the value of the register to be written, type Int

Slave Device
Address

Address of slave device

Timeout Waiting time for reading, timeout alarm
Return Value Return value variable of whether the operation is successful or not,

a return value of 0 means success, and a return value of 1 means
failure.

10.12 Array Instructions

10.12.1 SetMatrix2

To form a linear array in space by specifying two points, and then evenly divide this linear

array according to the set number of rows to obtain a matrix point group.

Version V1.0 Copyright @ Estun Codroid 169

Parameter Description
Matrix Name Name of the Matrix to be manipulated
p1 Specifies the first point of the linear array, type CPOS.
p2 Specifies the last point of the linear array, type CPOS.
Number of
Pieces

Number of rows of the generated array, type INT

10.12.2 SetMatrix3

To form a parallelogram array in space by specifying three points, and then divide this

parallelogram into equal parts according to the set number of rows and columns to

obtain a matrix of points.

Version V1.0 Copyright @ Estun Codroid 170

Parameter Description
Matrix Name Name of the Matrix to be manipulated
p1-1 Specifies the first point in the first row of the parallelogram, also

called the origin, of type CPOS.
p1-2 Specify the last point of the first row of the parallelogram, type

CPOS
p2-1 Specifies the first point of the last row of the parallelogram, of type

CPOS
Number of
rows

Generates the number of rows of the array, type INT

Columns Generates the number of columns of the array, type INT

10.12.3 SetMatrix4

To form a parallelogram array in space by specifying four points, and then equally divide

this parallelogram into a matrix point group according to the set number of rows and

columns. Compared with the Matrix3 command, this function can obtain more accurate

point positions. When calculating the target point position, the array is divided into four

regions, and then the three points closest to the target point are automatically selected

in each region for Matrix3 operation.

Version V1.0 Copyright @ Estun Codroid 171

Parameter Description
Matrix Name Name of the Matrix to be manipulated
p1-1 Specifies the first point in the first row of the parallelogram, also

called the origin, of type CPOS.
p1-2 Specify the last point of the first row of the parallelogram, type

CPOS
p2-1 Specifies the first point of the last row of the parallelogram, of type

CPOS
p2-2 Specify the point near the first point in the middle of the

parallelogram, type CPOS
Number of
rows

Specifies the last point of the last row of a parallelogram, of type
CPOS

Columns Generates the number of rows of the array, type INT

10.12.4 SetMatrix9

Version V1.0 Copyright @ Estun Codroid 172

To form a parallelogram array in space by specifying four points, and then evenly divide

this parallelogram into a matrix point group according to the set number of rows and

columns. This function can obtain more accurate point positions compared to the Matrix3

command. When calculating the target point position, the array is divided into 9 regions,

and then the three points closest to the target point are automatically selected in each

region for Matrix3 operation. When the number of rows or columns is even, the middle

point should be selected as the point closest to the first point of the row or column at the

middle position.

Parameter Description
Matrix Name Name of the Matrix to be manipulated
p1-1 Specifies the first point in the first row of the parallelogram, also

called the origin, of type CPOS.
p1-2 Specifies the point near the first point at the middle of the first row

of the parallelogram, type CPOS
p1-3 Specifies the last point of the first row of the parallelogram, of type

Version V1.0 Copyright @ Estun Codroid 173

CPOS
p2-1 Specifies the first point in the last row of a parallelogram, of type

CPOS
p2-2 Specify the point near the first point in the middle of the

parallelogram, type CPOS
p2-3 Specify the last point of the last row of the parallelogram, type

CPOS
p3-1 Specify the first point of the last row of the parallelogram, type

CPOS
p3-2 Specify the point near the first point in the middle of the last row

of the parallelogram, type CPOS
p3-3 Specify the last point in the last row of the parallelogram, type

CPOS
Number of
rows

Number of rows of the generated array, type INT

Number of
columns

Generates the number of columns of the array, type INT

10.12.5 GetMatrix2

Take the value of the corresponding point in the row and column after the execution of

the SetMatrix command and assign it to the target point. The orientation and additional

axis angle value of the target point remain consistent with those of the p1 point in the

SetMatrix command.

Parameter Description
Matrix Name Name of the Matrix to be manipulated
Target Point The value of the point to be fetched, type CPOS.
Point number The serial number of the point to be fetched in the Matrix, type

INT, the serial number counts from 0.

10.12.6 GetMatrix3

Take the value of the corresponding point in the row and column after the execution of

the SetMatrix command and assign it to the target point. The orientation and additional

axis angle value of the target point remain consistent with those of the p1-1 point in the

SetMatrix command.

Version V1.0 Copyright @ Estun Codroid 174

Parameter Description
Matrix Name Name of the Matrix to be manipulated
Rows Row number of the point to be fetched in the matrix, type INT,

number counting from 0
Columns Row number of the point to be fetched in the matrix, type INT,

counting from 0
Target Points The value of the point to be fetched, type CPOS.

10.12.7 GetMatrix4

Take the value of the corresponding row and column of the point after the execution of

the SetMatrix command and assign it to the target point. The orientation and additional

axis angle value of the target point remain consistent with those of the p1-1 point of the

SetMatrix command. Compared with the Matrix3 command, this function can achieve

more accurate point positions. When calculating the target point position, the array is

divided into four regions, and then three points closest to the target point are

automatically selected in each region for Matrix3 operation.

Parameter Description
Matrix Name Name of the Matrix to be manipulated
Rows Row number of the point to be fetched in the matrix, type INT,

number counting from 0
Columns Row number of the point to be fetched in the matrix, type INT,

counting from 0

Version V1.0 Copyright @ Estun Codroid 175

Target Points The value of the point to be fetched, type CPOS.

10.12.8 GetMatrix9

Take the value of the corresponding row and column of the point after the execution of

the SetMatrix command and assign it to the target point. The orientation and additional

axis angle value of the target point remain consistent with those of point p1-1 in the

SetMatrix command. Compared with the Matrix3 command, this function can achieve

more accurate point positions. When calculating the target point position, the array is

divided into 9 regions, and then three points closest to the target point are automatically

selected in each region for Matrix3 operation.

Parameter Description
Matrix Name Name of the Matrix to be manipulated
Rows Row number of the point to be fetched in the matrix, type INT,

number counting from 0
Columns Row number of the point to be fetched in the matrix, type INT,

counting from 0
Target Points The value of the point to be fetched, type CPOS.

10.13 String instructions

10.13.1 APosToStr

This instruction is used to convert the Apos variable into a string variable.

Version V1.0 Copyright @ Estun Codroid 176

Parameter Description
APOS to be
converted

APOS values to be converted

Stored String Converted string variable
Start String Add start string
End String Adding the ending string
Split character Spacing between values
Angle unit Angular units in APOS

10.13.2 CPosToStr

This instruction is used to convert the Cpos variable into a string variable.

Parameter Description
CPOS to be
converted

CPOS value to be converted

Stored String Converted string variable
Start String Add start string

Version V1.0 Copyright @ Estun Codroid 177

End String Adding the ending string
Split character Interval symbols between values
Angle unit Angle numeric unit in CPOS
Length unit Numerical units of length in CPOS

10.13.3 DAPosToStr

This instruction is used to convert the DApos variable into a string variable.

Parameter Description
DAPOS to be
converted

DAPOS value to be converted

Stored Strings Converted string variable
Start String Add start string
End String Adding the ending string
Split character Spacing between values
Angle unit DAPOS Angle Unit Format

10.13.4 DCPosToStr

This instruction is used to convert the DCpos variable into a string variable.

Version V1.0 Copyright @ Estun Codroid 178

Parameter Description
DCPOS to be
converted

DCPOS values to be converted

Stored Strings Converted string variable
Start String Add start string
End String Adding the ending string
Split character Spacing symbols between values
Angle unit DCPOS Angle Numeric Units
Length unit Numerical units of length in DCPOS

10.13.5 TranStrTolntArray

This instruction is used to convert a string variable into an int array variable.

Parameter Description
Current String String to be converted
Splitter Spacing symbols between values
Stored
Variables

The int array variable after conversion.

Version V1.0 Copyright @ Estun Codroid 179

Return Value Return value variable for success, 0 means success, 1 means
failure.

Starting String Add start string
End String Add the end string.

10.13.6 TranStrToRealArray

This instruction is used to convert a string variable into a real array variable.

Parameter Description
Current String String to be converted
Splitter Spacing symbols between values
Stored
Variables

The real array variable after conversion.

Return Value Return value variable for success, 0 means success, 1 means
failure.

Starting String Add start string
End String Add the end string.

10.13.7 TranStrToApos

This instruction is used to convert a string variable to an Apos variable.

Version V1.0 Copyright @ Estun Codroid 180

Parameter Description
Current String String to be converted
Splitter Spacing symbols between values
Stored
Variables

Apos variable after conversion

Return Value Return value variable of whether the operation is successful or not,
a return value of 0 means success, a return value of 1 means
failure.

Starting String Add start string
End String Add end string
Angle unit Angle numerical units in APOS

10.13.8 TranStrToCpos

This instruction is used to convert a string variable to a Cpos variable.

Version V1.0 Copyright @ Estun Codroid 181

Parameter Description
Current String String to be converted
Splitter Spacing symbols between values
Stored
Variables

Cpos variable after conversion

Return Value Return value variable of whether the operation is successful or not,
a return value of 0 means success, a return value of 1 means
failure.

Starting String Add start string
End String Add end string
Angle unit Angle unit of Cpos
Length unit Cpos unit of length

10.13.9 TranStrToDApos

This instruction is used to convert a string variable to a DApos variable.

Version V1.0 Copyright @ Estun Codroid 182

Parameter Description
Current String String to be converted
Splitter Spacing symbols between values
Stored
Variables

DApos variable after conversion

Return Value The return value of the operation, a value of 0 indicates success, a
value of 1 indicates failure.

Starting String Add start string
End String Add end string
Angle unit Angle unit form in DApos

10.13.10 TranStrToDCpos

This instruction is used to convert a string variable to a DCpos variable.

Version V1.0 Copyright @ Estun Codroid 183

Parameter Description
Current String String to be converted
Splitter Spacing symbols between values
Stored
Variables

DCpos variable after conversion

Return Value Return value variable for successful operation, 0 means success, 1
means failure.

Starting String Add start string
End String Add end string
Angle unit Angle unit of DCpos
Length unit The unit of length in DCpos

10.13.11 IntArrayToString

This instruction is used to convert an Int array into a string.

Parameter Description
Current String String to be converted
Int Array Array to be converted
String Output string result
Starting String Add start string
End String Add end string
Separator Spacing between values

10.13.12 RealArrayToString

This instruction is used to convert a Real array into a string.

Version V1.0 Copyright @ Estun Codroid 184

Parameter Description
Real Array Array to be converted
String Output string result
Start String Add start string
End String Add end string
Separator Spacing between values

10.13.13 BoolArrayToString

This instruction is used to convert a Boolean array into a string.

Parameter Description
Bool Array Array to be converted
String Output string result
Start String Add start string
End String Add end string
Separator Spacing between values

10.14 RS485 Instructions

10.14.1 RS485Init

Version V1.0 Copyright @ Estun Codroid 185

This command is used to initialize the RS485 port on the control cabinet.

Parameter Description
No. Robot control cabinet RS485 port or robot end RS485 port
Baud rate RS485 communication baud rate
Data Bit RS485 communication data bits
Check Bit RS485 communication parity bit
Stop Bit RS485 communication stop bit
Operation
Return Value

Return value variable of whether the operation is successful or not,
a return value of 0 means success, and a return value of 1 means
failure.

10.14.2 RS485Read

This command is used to read the RS485 data on the control cabinet.

Parameter Description
No. Robot control cabinet RS485 port or robot end RS485 port
Int array Variable in which the data to be read is stored
Timeout Time Timeout for reading, if no data is read after this time, an error will

be reported.
Bytes Length of data bytes to be read
Operation Return value variable of whether the operation is successful or not,

Version V1.0 Copyright @ Estun Codroid 186

Return Value a return value of 0 means success, and a return value of 1 means
failure.

10.14.3 RS485Write

This instruction is used to control the RS485 data transmission on the control cabinet.

Parameter Description
No. Robot control cabinet RS485 port or robot end RS485 port
Int arrays Variable where data to be sent is stored
Bytes Length of data bytes to be sent
Operation
Return Value

Return value variable of whether the operation is successful or not,
a return value of 0 means success, and a return value of 1 means
failure.

10.14.4 RS485FlushReadBuffer

This command is used to clear the cache data read from the RS485 port on the control

cabinet. It is generally cleared after reading to ensure normal reading in the next

operation. Alternatively, it can be left uncleared, and the data can be processed together

after multiple receptions.

Parameter Description
No. Robot control cabinet RS485 port or robot end RS485 port

10.15 Mathematical operation functions

Version V1.0 Copyright @ Estun Codroid 187

In the "IF" instruction and "..." =…” In the instructions, mathematical operation functions or

string operation functions may be used. This section explains the "mathematical

functions" that can be used.

10.15.1 sin

Sine trigonometric function.

Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.2 cos

Cosine trigonometric function.

Parameter 1: An integer or real type variable or constant.

The function return value: a real constant.

10.15.3 tan

Tangent trigonometric function.

Parameter 1: An integer or real type variable or constant.

The function return value: a real constant.

10.15.4 asin

Inverse sine trigonometric function.

Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.5 acos

Inverse cosine trigonometric function.

Parameter 1: An integer or real type variable or constant.

The function return value: a real constant.

10.15.6 atan

Inverse tangent trigonometric function.

Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

Version V1.0 Copyright @ Estun Codroid 188

10.15.7 atan2

The X/Y inverse tangent function returns the radian value from the X-axis to the point (x,

y).

Parameter 1: An integer or real variable or constant.

Parameter 2: An integer or real variable or constant.

The function return value: a real constant.

10.15.8 sinh

Hyperbolic sine function.

Parameter 1: An integer or real type variable or constant.

The function return value: a real constant.

10.15.9 cosh

Hyperbolic cosine function.

Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.10 tanh

Hyperbolic tangent function.

Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.11 log

Natural logarithmic function.

Parameter 1: An integer or real type variable or constant.

The function return value: a real constant.

10.15.12 log10

The logarithmic function with base 10.

Parameter 1: An integer or real type variable or constant.

The function return value: a real constant.

Version V1.0 Copyright @ Estun Codroid 189

10.15.13 sqrt

Square root function.

Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.14 exp

The exponential function with base e.

Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.15 pow

Exponential function.

Parameter 1: An integer or real variable or constant, representing the base.

Parameter 2: An integer or real variable or constant, representing the exponent.

The function return value: a real constant.

10.15.16 deg

Radian-to-degree conversion function.

Parameter 1: An integer or real type variable or constant.

The function return value: a real constant.

10.15.17 rad

Function for converting degrees to radians.

Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.18 fmod

Modulo function.

Parameter 1: An integer or real variable or constant, the dividend.

Parameter 2: An integer or real variable or constant, the divisor.

The function return value: a real constant.

Version V1.0 Copyright @ Estun Codroid 190

10.15.19 floor

Floor function.

Parameter 1: An integer or real type variable or constant.

The function return value is an int type constant.

10.15.20 random

Get a random integer between two parameters.

Parameter 1: An integer variable or constant.

Parameter 2: An integer variable or constant.

The function return value is an int type constant.

10.16 String Functions

10.16.1 byte

Get the ASCII code of the character at the nth position in the string.

Parameter 1: A string type variable or constant.

Parameter 2: An integer variable or constant.

The function return value is an int type constant.

10.16.2 char

Return the character corresponding to the ASCII code.

Parameter 1: An integer variable or constant.

The function returns a string type constant.

10.16.3 find2

Return the position of a substring in a string.

Parameter 1: A string type variable or constant.

Parameter 2: string type variable or constant

The function return value is an int constant. (When the corresponding character or

string is not found, the return value is -1.)

10.16.4 findEnd

Version V1.0 Copyright @ Estun Codroid 191

The string reverse search instruction finds the last occurrence of a specified string within

a string and returns the index number.

Parameter 1: The source string to be searched, a string type variable or constant.

Parameter 2: The specified string to be searched for, a string type variable or constant.

The function return value: the index number after the search, an int type variable.

10.16.5 format

The formatted string instruction returns the formatted data by passing a reasonable

format control character in parameter 1, followed by any number of parameters to fill

this format control character.

Parameter 1: String format, a string type variable or constant.

Parameter 2: The parameter to be filled with the format specifier, a string/real/int type

variable or constant.

Parameter 3: The parameter to be filled with the format specifier, a string/real/int type

variable or constant.

... There are no restrictions on the parameters. The total length just needs to be within

the limit of a single instruction string.

The return value of the function: the number of successfully split and saved elements in

the array, an int type variable.

Format strings start with % and support the following usages: %c - accepts a number and

converts it to the corresponding character in the ASCII table; %d, %i - accepts a number

and converts it to a signed integer format; %o - accepts a number and converts it to an

octal format; %u - accepts a number and converts it to an unsigned integer format; %x -

accepts a number and converts it to a hexadecimal format using lowercase letters x; %X

- accepts a number and converts it to a hexadecimal format using uppercase letters

X; %f - accepts a number and converts it to a floating-point format; %s - accepts a string

and formats it according to the given parameters. Examples: format("%%c: %c", 83)

outputs S; format("%+d", 17.0) outputs +17; format("%05d", 17) outputs 00017;

format("%o", 17) outputs 21; format("%u", 3.14) outputs 3; format("%x", 13) outputs d;

format("%X", 13) outputs D; format("%6.3f", 13) outputs 13.000; format("%s", "monkey")

outputs monkey; format("%10s", "monkey") outputs monkey.

10.16.6 getAt

Single string acquisition instruction: Acquire the string data of a specific position and

return the acquired data.

Parameter 1: The string to be extracted, a string type variable or constant.

Parameter 2: The position to be obtained, an int type variable or constant.

Version V1.0 Copyright @ Estun Codroid 192

Function return value: The obtained string, a string-type variable.

10.16.7 gsub

Search for the substring `a` within the string `s` and replace it with the string `b`.

Parameter 1: A string type variable or constant.

Parameter 2: A string type variable or constant.

Parameter 3: A string type variable or constant.

The function returns a string type constant.

10.16.8 len

Calculate the length of a string.

Parameter 1: A string type variable or constant.

The function return value is an int type constant.

10.16.9 left

The string left extraction instruction starts from the left side of the string, extracts a

specified number of characters, and returns the extracted data.

Parameter 1: The string to be extracted, a string type variable or constant.

Parameter 2: The quantity to be extracted, an int type variable or constant.

The function return value: the truncated string, a string type variable.

10.16.10 lower

Return the lowercase format of the string.

Parameter 1: A string type variable or constant.

The function returns a string type constant.

10.16.11 right

The string right extraction instruction starts from the right side of the string, extracts a

specified number of characters, and returns the extracted data.

Parameter 1: The string to be extracted, a string type variable or constant.

Parameter 2: The quantity to be extracted, an int type variable or constant.

The function return value: the truncated string, a string type variable.

Version V1.0 Copyright @ Estun Codroid 193

10.16.12 reverse

The string reversal instruction reverses the string and returns it.

Parameter 1: The string to be reversed, a string type variable or constant.

The function return value: the reversed string, a string type variable.

10.16.13 strcmp

String comparison instruction, returning the ASCII code difference between the first

different characters.

Parameter 1: The string data to be compared, a string type variable or constant.

Parameter 2: The string data to be compared, a string type variable or constant.

The function return value: The returned ASCII code value, an int type variable.

10.16.14 trimLeft

The left trim instruction for strings removes the spaces on the left side of the string and

returns the modified string data.

Parameter 1: The string to be trimmed, a string-type variable or constant.

The function return value: the trimmed string, a string type variable.

10.16.15 trimRight

The string right trim instruction removes the spaces on the right side of the string and

returns the modified string data.

Parameter 1: The string to be trimmed, a string-type variable or constant.

The function return value: the trimmed string, a string type variable.

10.16.16 upper

Return the uppercase format of the string.

Parameter 1: A string type variable or constant.

The function returns a string type constant.

10.16.17 IToStr

The integer-to-string conversion instruction converts integer data into string type data

and returns the converted string.

Version V1.0 Copyright @ Estun Codroid 194

Parameter 1: The integer data to be converted, an int type variable or constant.

The function return value: the converted string data, a string type variable.

10.16.18 RToStr

The real number to string conversion instruction converts real number data into string

type data and returns the converted string.

Parameter 1: The real number data to be converted, a REAL type variable or constant.

The function return value: the converted string data, a string type variable.

10.16.19 StrToI

The string-to-integer conversion instruction converts string data into integer type data

and returns the converted integer data.

Parameter 1: The string data to be converted, a string type variable or constant.

The function return value: the converted integer data, an int type variable.

10.16.20 StrToR

The string-to-real data conversion instruction converts string data into real number type

data and returns the converted real number.

Parameter 1: The string data to be converted, a string type variable or constant.

The function return value: the converted real number data, a REAL type variable.

10.16.21 Append

The Append instruction is used to append strings.

Parameter 1: The string to be appended 1.

Parameter 2: String 1 to be appended.

The function return value: a string type variable of string 1 + string 2.

Version V1.0 Copyright @ Estun Codroid 195

Appendix to Chapter 1

11.1 Error Codes

Currently, there are a total of 6 information levels for the robot. The fourth digit of the error

code indicates the error level.

No. Error & Level
0 System occupancy
1 System prompt
2 Alert
3 General Error
4 Critical error
5 Fatal error

When general errors or more serious issues occur, the robot will power off and stop operating.

When a warning-level error occurs, the robot will slow down and stop.

If multiple errors occur at the same time, the one with the highest severity level will be

executed.

There will only be one error code for the same type of error, but the specific error content will

be displayed on the teaching pendant.

Error Code Description
FFF10000 Undefined Hints
FFF20000 Undefined warning
FFF30000 Undefined error
FFF40000 Undefined Critical Error

50010000 Robot power-up prompt
50010001 Robot power down prompt
50010002 Robot encoder calibration prompt
50030003 Robot state switching timeout
50040004 Abnormal axis status
50030005 Unusual position at pointing
50010006 Reset
50030007 Reset timeout
50030008 Joint position overrun
50030009 End position overrun
5003000A Joint desired position jump
5003000B Joint output torque jump
5003000C Joint tracking error too large
5003000D Joint speed overrun
5003000E Joint collision detection trigger
5003000F Unable to effectively calculate joint collision detection
50030010 Unable to calculate end collision detection effectively
50030011 End collision detection trigger
50030012 End speed overrun
50030013 Error while dragging
50030014 Error when dragging stops

https://cn.bing.com/dict/search?q=system&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=prompt&FORM=BDVSP6&cc=cn

Version V1.0 Copyright @ Estun Codroid 196

50030015 Cannot perform endpoint movement
50020016 Error when resetting motion planner
50020017 Error setting initial position of Motion Planner
50020018 Error in adding commands to the Motion Planner
50030019 Emergency stop
5002001A Parameterization is in progress.
5003001B Error during parameterization
5002001C Emergency stop pressed during power-up
5002001D Desired joint speed jump
5002001E Drag and drop overspeed
5002001F Configuration parameters changed during motion
58020000 Illegal IO configuration
58020001 Illegal bus configuration

59020000 Welder current setting error
59020001 Wrong welder voltage setting

60020000 Motion planner path calculation error
60020001 Motion planner operation error
60020003 Node data to json failed
60020004 Failed to get shared memory node

60030003 Failed to get inverse matrix of robot's velocity Jacobi matrix
60030004 Failed to get the inverse matrix of the force Jacobi matrix of the robot.
60030005 Failed to get the positive kinematic position of the robot
60030006 Failed to get the positive kinematic velocity of the robot
60030007 Cannot get the inverse kinematic position of the robot
60030008 Cannot get the inverse kinematic velocity of the robot
60030009 Wrong robot setup
6003000A Joint overrun
6003000B Unable to get robot inverse kinematics
6003000C Cannot get robot joint equivalent moments of inertia
6003000D Cannot get robot joint equivalent gravitational moments
6003000E Unable to get the equivalent kinematic moments of the robot joints.
6003000F It is not possible to obtain the inertia matrix of a robot dynamics model.
60030010 It is not possible to obtain the gravity matrix for a robot dynamics model.
60030011 It is not possible to obtain the scientific force matrix of the robot dynamics

model.
60030012 It is not possible to obtain the rotation matrix from the base coordinate

system to the flange coordinate system of the robot.

61010000 Unknown file
61010001 File parsing error
61010002 File loading error
61010003 Format-specific file conversion error
61010004 Format-specific file write error

70020000 Fitting matrix is not full of rank
70020001 Calibrated triple point covariance

71020000 Robot initial position unknown
71020001 Insufficient initial conditions, wait for additional conditions, no error

reported.
71020002 Input reference coordinate system type does not exist during relative

Version V1.0 Copyright @ Estun Codroid 197

motion.
71020003 Transition type unknown
71020004 Point type unknown
71020005 Arc type unknown
71020006 Move command queue is full
71020007 Velocity is not normal
71020008 Unable to create path
71020009 Index out of range
7102000A Failed to solve
7102000B Trajectory planning failed
7102000C Move type does not exist
7102000D Move type mismatch
7102000E Trigger type does not match
7102000F The Move command Id for the trigger does not exist.
71020010 Path attribute does not exist
71020011 Trigger type does not match
71020012 The Move command Id of the trigger does not exist.
71020013 Position point does not exist
71020014 Motion magnification is out of range
71020015 The number of points exceeds the maximum value
71020016 Parameter error
71020017 Spline interpolation failure
71020018 Index update failure
71020019 Failed to get arm angle

76020000 Oscillation type not present
76020001 Oscillation amplitude is negative
76020002 Oscillation frequency is negative
76020003 Oscillation angle is negative
76020004 Operation angle is negative
76020005 Left dwell time is negative
76020006 Negative right dwell time
76020007 Frequency too low
76020008 Frequency too high
76020009 Dwell time too long
7602000A Azimuth too large
7602000B Path type does not exist
7602000C Weld direction is the same as the Z direction of the current tcp, unable to

determine the swing direction
7602000D Compensation method does not exist
7602000E Compensation value update failure
7602000F Incorrect number of sampling periods
76020010 The number of sampling cycles used for reference value calculation is

wrong
76020011 Attitude correction failure
76020012 Point position update failure
76020013 Surfacing error

78030000 Input parameter dimensions do not match the robot
78030001 External force estimator initialization failure
78030002 External force estimator did not set initial state
78030003 Kalman filter built into the external force estimator fails to update the

output.

Version V1.0 Copyright @ Estun Codroid 198

78030104 Unable to get the joint external force estimated by the external force
estimator.

78030105 Cannot get the joint acceleration estimated by the external force estimator.
78030106 The collision detector was not initialized successfully.
78030107 Cannot get the status of collision detection.
78030108 Failure to initialize the conductivity controller.
78030109 The parameter setting of the guider controller is wrong.
7803010A Unable to update the output of the joint guide program.
7803010B The end space axis lock was not initialized successfully.
7803010C Unable to set the direction of end space lock
7803010D Cannot get the end impedance force of end space lock.
7803010E Unable to get the impedance force of the end locking axis converted to

the joint end.
7803010F Unable to update the output of the teach-in program
78030110 The joint limit in drag mode is exceeded.
78030111 Unable to acquire external force from the six-dimensional force transducer
78030112 Constant force tracking & soft force control is turned on at the same time

during force control, not allowed.

80030000 Joint tracking error overrun trigger
80030001 Joint collision detection trigger
80030002 Joint position limit trigger
80030003 Joint speed limit trigger

91010000 WHILE control expression is empty
91010001 IF control expression is empty
91010002 ELSEIF control expression is empty
91010003 ELSE control followed by ELSEIF
91010004 Unknown operator
91010005 The variable name of the data is not of string type
91010006 Wait time parameter is not an integer
91010007 Control parameter is not legal
91010008 Control type is not legal

91021007 Failed to open configuration file
91011008 Failed to save global variable
91011009 Failed to get global variable
9101100A Failed to save project variables
9101100B Failed to get project variables
9101100C Failed to save project
9102100D Failed to read project file
9102100E Failed to read lua file

92020000 Array variable index out of range
92020001 Failed to find variable by variable name
92020002 Unknown Variable Type
92020003 Failed to find IO port
92020004 Request parameter error

93010000 Setting shared memory node failed
93010001 CPOS to APOS failed
93010002 APOS to CPOS failed
93010003 Point data calculation failure
93010004 Motion kernel state error

Version V1.0 Copyright @ Estun Codroid 199

93010005 Calibration Failure

94010002 Subscribed topic does not exist
94010003 Failed to open topic configuration file
94010004 Failed to parse topic configuration file
94010005 Duplicate topic name
94010006 Memory node corresponding to topic not found

96010000 Unknown command parsed
96020001 Failed to load instruction
96020003 Kernel state does not support this directive
96020004 Project status does not support this instruction
96020005 Invalid project control command
96020006 Failed to load project data
96020007 Project load failed
96020008 Invalid control ID for project start run
91010009 Project started running
9101000A Project stopped running
9101000B Task status error

97020000 Too many addDo commands
97020001 Jump control does not exist
97020002 Illegal IO port number parameter
97020003 Lua execution expression fails
97020004 Invalid task control instruction
97020005 AddDo instruction execution failure
97020006 Failed to execute an instruction in the Waiting for Execution instruction

queue
97020007 Execution of unknown instruction
97020008 Lua load instruction failed
97020009 Failed to execute instruction in lua
9702000A Failed to write instruction to motion kernel
9702000B Failed to update AddDo instruction status
9702000C Registering variables to lua failed
9702000D Failed to initialize lua
9702000E Failed to load initialization for lua configuration scripts
9702000F Unknown user variable type
97020010 Failed to create Path
97020011 Calculate Path failed
97020012 Failed to run Path
97020013 OnDistance cannot be associated with MovJ command
97020014 Invalid parameter

11.2 User Levels and Permissions

Category Function user admin

Project New ✔ ✔
Switch ✔ ✔
Save ✔ ✔
Copy ✔ ✔

Version V1.0 Copyright @ Estun Codroid 200

Download ✔ ✔
Delete ✔ ✔
Import ✔ ✔
Autorun ✔ ✔
Stop ✔ ✔
Single-step run ✔ ✔
Run pointer ✔ ✔
Single-task and multi-task switching ✔ ✔

Visual
Programmin
g

Control View ✔ ✔
Drag and Drop Commands ✔ ✔
Add Command ✔ ✔
Command Selection ✔ ✔
Command Properties Editing ✔ ✔
Command Copy ✔ ✔
Command Delete ✔ ✔
Expanding and Collapsing Tree
Commands

✔ ✔

Command Attribute Editing
Checksums

✔ ✔

Conditional expression checking ✔ ✔
Target value checking for goto type
instructions

✔ ✔

Check result message ✔ ✔
Positioning Add Position ✔ ✔

Deleting poses ✔ ✔
Duplicating poses ✔ ✔
Adding a pose from a mov control ✔ ✔
Updating a pose from a mov-like
control

✔ ✔

Variables Adding Variables ✔ ✔
Deleting Variables ✔ ✔
Editing Variables ✔ ✔
Displaying Variables ✔ ✔
Running variables in real time ✔ ✔
Adding a Variable of a Specified Type
from the Control Properties

✔ ✔

Setup Basic ✘(No
authority)

✘(No
authority)

Mechanics - Installation ✘(No
authority)

✔

Mechanical - Relative to World
Coordinate System

✘(No
authority)

✔

Mechanical - DH ✘(No
access)

✘(No access)

Safety - Joint/End Limits ✘(No
authority)

✔

Safety - Other ✘(No
authority)

✔

Motion - automatic mode ✘(No
authority)

✔

Motion - manual mode ✘(No
authority)

✔

Version V1.0 Copyright @ Estun Codroid 201

Motion-Servo ✘(No
access)

✘

Debugging ✘ ✘
3D
Simulation

Simulation Show ✔ ✔
Switching Viewpoints ✔ ✔
Clearing the trajectory line ✔ ✔
Return to zero position ✔ ✔
Return to packing position ✔ ✔
Switch coordinate system ✔ ✔
Teach mode configuration ✔ ✔
Automatic mode ✔ ✔
Manual mode ✔ ✔
Nodal movement ✔ ✔
End Point Motion ✔ ✔
I/O Configuration ✔ ✔
Peripherals ✔ ✔

Logging View ✔ ✔
Download ✔ ✔

Plug-ins Welding Process Template List ✔ ✔
Add Template ✔ ✔
Edit Template ✔ ✔
JOB number selection ✔ ✔

Monitoring Monitoring System ✘ ✘
Specify monitoring data ✘ ✘

Debugging Send path data ✘ ✘
Debug Data Cache ✘ ✘

Configuratio
n

Changing configuration values ✘ ✘
Changing Configuration Structure ✘ ✘

User Registering a new user ✘ ✔
Deleting a user ✘ ✔

Bus Register Editing ✘ ✔
Error
Messages

Clearing Errors ✔ ✔
Reset ✔ ✔
Real-time logging ✔ ✔

Other
Functions

Undo and Redo ✔ ✔
Reload Configuration ✔ ✔
Refresh Page ✔ ✔
Maximizing the Module Window ✔ ✔
Closing the Module Window ✔ ✔
Online Settings ✔ ✔
Online status ✔ ✔
Lock Window ✔ ✔
Switch between Chinese and English ✔ ✔
Trace ID related functions ✘ ✘

11.3 Declaration

Version V1.0 Copyright @ Estun Codroid 202

Version V1.0 Copyright @ Estun Codroid 203

Chapter 12 Spare Parts List

The spare parts and consumables system includes vulnerable and consumable

components. The items listed in the table and their service lives are for reference only.

The actual condition depends on the frequency of use and maintenance.

No. Name Model Brand Durability

1 Key Switch NP6-22Y2 CHINT 100000 times

2 Enable Button (black) HE6B-M200BPN10 IDEC 100000 times

3 Button HBGO12SH-10W/J/S(N) HBAN 50000 times

4 Button MP16S/F11-EDY -24V/B CMP 100000 times

5 Button NP6-22ZS CHINT 100000 times

6 Switch Power Supply LMFXXXX-20B48 MORNSUN 25000h

7 Fan JC6025B24UC2 JENCE 70000h

8 Thermal Protect BW-BCM-95°C SAFTTY 10000cycles

Version V1.0 Copyright @ Estun Codroid 204

Chapter 13 Contact Information

China：

Nanjing Estun Codroid Technology Co., Ltd.

5F, Building 1, Southeast University National Science Park -

Jiangning Branch, No. 33 Southeast University Road, Jiangning District, Nanjing

Service: +86-400-025-3336

Europe：

ESTUN Robotics Europe AG

Graben Strasse 256340 Baar, Switzerland

To improve the product, the specifications, ratings and dimensions of this product may

be changed without further notice.

For inquiries regarding the content of this document, please contact our sales

department.

	Chapter 1 Preface
	1.1 Safety
	1.2 Nameplate
	1.3 How to Use This Manual
	1.4 Copyright and Trademark
	1.5 Disclaimer of the Manual
	1.6 Common Terms
	1.6.1 Robot
	1.6.2 Maximum workspace
	1.6.3 Precision
	1.6.4 Repeatability accuracy
	1.6.5 Trajectory accuracy
	1.6.6 Trajectory repetition accuracy
	1.6.7 Tool Center Point (TCP)
	1.6.8 Payload
	1.6.9 Protective stop
	1.6.10 Singularity (Singular Point)

	1.7 Revision Record

	Chapter 2 Safety Information
	2.1 Validity and Responsibility
	2.2 The warning symbols appointed in this manual
	2.3 Safety Precautions
	2.4 Safety Requirements
	2.5 Safety Disclaimer
	2.6 Limitation of Liability
	2.7 Stop category
	2.8 Risk assessment
	2.9 Safety function
	2.10 Emergency stop recovery
	2.11 Forced drive without power
	2.12 Stopping time and stopping distance
	2.13 Storage, usage and transportation conditions
	2.14 Control cabinet and body identification

	Chapter 3 Quick Start
	3.1 Confirmation of packing contents
	3.2 Robot installation
	3.2.1 Transportation
	3.2.2 Handling
	3.2.2.1 Manner of handling robots weighing 10kg or
	3.2.2.2 20kg robot handling method

	3.2.3 Installation
	3.2.4 Operation position layout

	3.3 Start using
	3.3.1 Power on and start up
	3.3.2 Write a program
	3.3.3 Power off

	Chapter 4 Mechanical Hardware and Installation
	4.1 Robot composition
	4.2 Work Space
	4.3 Load curve
	4.4 Flange interface
	4.5 Installation interface
	4.6 Robot Specification
	4.7 Control cabinet
	4.8 Handle

	Chapter 5 Electrical Hardware and Installation
	5.1 End Interface
	5.1.1 Pro terminal interface
	5.1.2 Meaning of the indicator light strip
	5.1.3 M8 Interface

	5.2 Screen information
	5.3 Control cabinet interface
	5.3.1 Overview of Electrical Interfaces
	5.3.2 Safety Interface
	5.3.3 General Input and Output Overview
	5.3.4 External power connection method for digital
	5.3.5 Internal power connection method for digital
	5.3.6 External power connection method for digital
	5.3.7 Internal power connection method for digital
	5.3.8 Simulation input/output interface
	5.3.9 CAN/485/IO interface
	5.3.10 LAN Network Port
	5.3.11 Communication input

	Chapter 6 Maintenance and Warranty
	6.1 Notes
	6.2 Daily inspection items
	6.2.1 General cleaning
	6.2.2 Control box
	6.2.2.1 Test the emergency stop button on the hand
	6.2.2.2 Test free drag mode
	6.2.2.3 Test safe input and output
	6.2.2.4 Visual inspection

	6.2.3 Robot

	6.3 System update
	6.3.1 Update steps

	6.4 Common Mistakes
	6.4.1 Singularity/Inverse solution failure
	6.4.2 Trigger collision detection
	6.4.3 Location/Speed Exceedance
	6.4.4 Joint tracking error is too large
	6.4.5 Alarm cleared

	6.5 Fault code description
	6.6 Disclaimer
	6.7 Abandoned robots

	Chapter 7 Overview of the Teaching Pendant Interfa
	7.1 Login interface
	7.2 Home page
	7.2.1 Switch tab area
	7.2.2 Account Settings Button
	7.2.3 Error message and real-time log window butto
	7.2.4 Full-screen display button

	7.3 Project Tab
	7.3.1 Quick operation area
	7.3.2 Graphics Programming Area
	7.3.2.1 Title Area
	7.3.2.2 Multitasking
	7.3.2.3 Programming instructions
	7.3.2.4 Program Tree

	7.3.3 Pose Zone
	7.3.4 Parameter Area
	7.3.5 3D Simulation
	7.3.6 Register
	7.3.7 I/O
	7.3.8 Variable Management
	7.3.9 Project Management Area
	7.3.10 Speed ratio adjustment area

	7.4 Settings tab
	7.4.1 Basic
	7.4.1.1 IP address
	7.4.1.2 Serial number
	7.4.1.3 Default tools
	7.4.1.4 Default load
	7.4.1.5 DH Parameters
	7.4.1.6 Installation
	7.4.1.7 xyz offset
	7.4.1.8 abc rotation

	7.4.2 Tools, load, coordinate system
	7.4.2.1 Tools
	7.4.2.2 Load
	7.4.2.3 Coordinate system

	7.4.3 Others
	7.4.3.1 Joint overspeed protection
	7.4.3.2 Joint hypermobility threshold
	7.4.3.3 End-of-travel overspeed protection
	7.4.3.4 Joint collision detection sensitivity
	7.4.3.5 Joint collision detection threshold
	7.4.3.6 Joint Limiting
	7.4.3.7 End stop limit
	7.4.3.8 Safe positions
	7.4.3.9 Manual mode terminal speed limit
	7.4.3.10 Load verification sensitivity
	7.4.3.11 Drag enable sensitivity check

	7.4.4 Sports
	7.4.4.1 Point movement
	7.4.4.2 It's time for exercise.
	7.4.4.3 Automatic

	7.4.5 Register communication
	7.4.5.1 ModbusTCP
	7.4.5.2 ProfiNet
	7.4.5.3 EtherNetIP

	7.4.6 IO
	7.4.6.1 DI Function Configuration
	7.4.6.2 DO Function Configuration

	7.4.7 MODBUS Master
	7.4.8 Panel IO

	7.5 Log tab
	7.6 Management tab

	Chapter 8 Introduction to Variables
	8.1 Variable Overview
	8.2 Variable
	8.2.1 POSE
	8.2.2 Basic Data Types
	8.2.3 SPEED
	8.2.4 ACC
	8.2.5 ZONE
	8.2.6 CLOCK
	8.2.7 Socket
	8.2.8 INTERRUPT
	8.2.9 LsScale
	8.2.10 LsThresh
	8.2.11 VibrationSuppression
	8.2.12 Matrix2
	8.2.13 Matrix3
	8.2.14 Matrix4
	8.2.15 Matrix9

	Chapter 9 Calibration
	9.1 Joint coordinate system
	9.2 World coordinate system
	9.3 Coordinate System and Calibration
	9.3.1 Three-point calibration method
	9.3.1.1 Start calibration
	9.3.1.2 Calibration successful
	9.3.1.3 Calibration failed
	9.3.1.4 List of coordinate systems

	9.3.2 Use the user coordinate system
	9.3.2.1 Use the user coordinate system when joggin
	9.3.2.2 Switching coordinate systems in the progra

	9.4 Tools and Calibration
	9.4.1 Four-direction calibration method
	9.4.1.1 Start calibration
	9.4.1.2 Calibration succussed
	9.4.1.3 Calibration failed

	9.4.2 One-point calibration method (attitude)
	9.4.2.1 Start calibration
	9.4.2.2 Calibration results

	9.4.3 Use the tool coordinate system
	9.4.3.1 Use the tool coordinate system when joggin
	9.4.3.2 Tools used in the program

	Chapter 10 Instruction Introduction
	10.1 Displacement Instructions
	10.1.1 MovJ
	10.1.2 MovL
	10.1.3 MovC
	10.1.4 MovCircle
	10.1.5 MovJRel
	10.1.6 MovLRel
	10.1.7 MovLSearch
	10.1.8 AddDo
	10.1.9 MovTraj

	10.2 Logical Instructions
	10.2.1 GoTo
	10.2.2 If
	10.2.3 ElseIf
	10.2.4 Otherwise
	10.2.5 While
	10.2.6... =...
	10.2.7 RETURN
	10.2.8 CALL
	10.2.9 RUN
	10.2.10 KILL
	10.2.11 Labeling

	10.3 Flow Control Instructions
	10.3.1 Wait
	10.3.2 WaitFinish
	10.3.3 WaitCondition

	10.4 IO Instructions
	10.4.1 SetDO
	10.4.2 SetAO
	10.4.3 WaitDI
	10.4.4 WaitDI8421
	10.4.5 WaitAI
	10.4.6 GetDI8421
	10.4.7 GetDO8421
	10.4.8 SetDO8421
	10.4.9 GetDO
	10.4.10 GetDI
	10.4.11 GetAO
	10.4.12 GetAI

	10.5 Set instructions
	10.5.1 SetTool
	10.5.2 SetCoord
	10.5.3 SetPayload
	10.5.4 Stop
	10.5.5 EnaVibraSuppr
	10.5.6 DisVibraSuppr
	10.5.7 ClsDectLevel

	10.6 Position Operation Instructions
	10.6.1 GetCurAPos
	10.6.2 GetCurCPos
	10.6.3 APosToCPos
	10.6.4 CPosToAPos
	10.6.5 CPosToCPos
	10.6.6 ToolOffset
	10.6.7 UserOffset
	10.6.8 CposOffset
	10.6.9 GetAxis
	10.6.10 GetCartesian
	10.6.11 Position Inverse
	10.6.12 PointsDistance
	10.6.13 InterpolationCpos
	10.6.14 TransformPlane
	10.6.15 GetTrajStartPoint
	10.6.16 GetTrajEndPoint

	10.7 Bitwise Operation Instructions
	10.7.1 BitAnd
	10.7.2 BitNeg
	10.7.3 BitOr
	10.7.4 BitLSH
	10.7.5 BitRSH

	10.8 Clock Instruction
	10.8.1 CLKStart
	10.8.2 CLKStop
	10.8.3 CLKReset

	10.9 Socket Command
	10.9.1 SocketCreate
	10.9.2 SocketClose
	10.9.3 SocketSendStr
	10.9.4 SocketSendReal
	10.9.5 SocketSendInt
	10.9.6 SocketReadReal
	10.9.7 SocketReadInt
	10.9.8 SocketReadStr

	10.10 Interrupt Instruction
	10.10.1 IConnect
	10.10.2 IDelete
	10.10.3 ITimer
	10.10.4 ICondition

	10.11 Modbus Commands
	10.11.1 GetModConState
	10.11.2 ReadSingleCoilReg
	10.11.3 ReadDiscretelnputReg
	10.11.4 ReadSingleHoldReg
	10.11.5 ReadInputReg
	10.11.6 WriteSingleCoilReg
	10.11.7 WriteSingleHoldReg

	10.12 Array Instructions
	10.12.1 SetMatrix2
	10.12.2 SetMatrix3
	10.12.3 SetMatrix4
	10.12.4 SetMatrix9
	10.12.5 GetMatrix2
	10.12.6 GetMatrix3
	10.12.7 GetMatrix4
	10.12.8 GetMatrix9

	10.13 String instructions
	10.13.1 APosToStr
	10.13.2 CPosToStr
	10.13.3 DAPosToStr
	10.13.4 DCPosToStr
	10.13.5 TranStrTolntArray
	10.13.6 TranStrToRealArray
	10.13.7 TranStrToApos
	10.13.8 TranStrToCpos
	10.13.9 TranStrToDApos
	10.13.10 TranStrToDCpos
	10.13.11 IntArrayToString
	10.13.12 RealArrayToString
	10.13.13 BoolArrayToString

	10.14 RS485 Instructions
	10.14.1 RS485Init
	10.14.2 RS485Read
	10.14.3 RS485Write
	10.14.4 RS485FlushReadBuffer

	10.15 Mathematical operation functions
	10.15.1 sin
	10.15.2 cos
	10.15.3 tan
	10.15.4 asin
	10.15.5 acos
	10.15.6 atan
	10.15.7 atan2
	10.15.8 sinh
	10.15.9 cosh
	10.15.10 tanh
	10.15.11 log
	10.15.12 log10
	10.15.13 sqrt
	10.15.14 exp
	10.15.15 pow
	10.15.16 deg
	10.15.17 rad
	10.15.18 fmod
	10.15.19 floor
	10.15.20 random

	10.16 String Functions
	10.16.1 byte
	10.16.2 char
	10.16.3 find2
	10.16.4 findEnd
	10.16.5 format
	10.16.6 getAt
	10.16.7 gsub
	10.16.8 len
	10.16.9 left
	10.16.10 lower
	10.16.11 right
	10.16.12 reverse
	10.16.13 strcmp
	10.16.14 trimLeft
	10.16.15 trimRight
	10.16.16 upper
	10.16.17 IToStr
	10.16.18 RToStr
	10.16.19 StrToI
	10.16.20 StrToR
	10.16.21 Append

	Appendix to Chapter 1
	11.1 Error Codes
	11.2 User Levels and Permissions
	11.3 Declaration

	Chapter 12 Spare Parts List
	Chapter 13 Contact Information

