

ESTUN CODROID **S-SERIES**

Robots _User Manual_

ROBOTS MODEL:

S3-60 Eco S3-60 Pro

S5-90 Pro

S5-90 Eco

S10-140 Eco S20-180 Eco S10-140 Pro S20-180 Pro

CONTROL CABIENT MODEL: COB-A03 COB-A05

COB-A10

COB-A20

NANJING ESTUN CODROID TECHNOLOGY CO. LTD

5/F, Building 1, jiangning, Double innovation Base, National University Science Park, Southeast University. No.33, Southeast University Road, jiangning District. Nanjing, 211102 jiangsu, P. R. china 400-025-3336

ORIGINAL INSTRUCTIONS

Document No UM202410001 Revision:V1.0 Published:2024-10-10

Contents

Chapter 1 Preface	
1.1 Safety	
1.2 Nameplate	
1.3 How to Use This Manual	
1.4 Copyright and Trademark	
1.5 Disclaimer of the Manual	
1.6 Common Terms	
1.6.1 Robot	
1.6.2 Maximum workspace	
1.6.3 Precision	
1.6.4 Repeatability accuracy	
1.6.5 Trajectory accuracy	
1.6.6 Trajectory repetition accuracy	
1.6.7 Tool Center Point (TCP)	13
1.6.8 Payload	
1.6.9 Protective stop	
1.6.10 Singularity (Singular Point)	
1.7 Revision Record	
Chapter 2 Safety Information	14
2.1 Validity and Responsibility	14
2.2 The warning symbols appointed in this manual	
2.3 Safety Precautions	
2.4 Safety Requirements	
2.5 Safety Disclaimer	
2.6 Limitation of Liability	
2.7 Stop category	
2.8 Risk assessment	
2.9 Safety function	
2.10 Emergency stop recovery	
2.11 Forced drive without power	
2.12 Stopping time and stopping distance	
2.13 Storage, usage and transportation conditions	20
2.14 Control cabinet and body identification	20
Chapter 3 Quick Start	
3.1 Confirmation of packing contents	
3.2 Robot installation	
3.2.1 Transportation	

3.2.2 Handling	24
3.2.3 Installation	27
3.2.4 Operation position layout	29
3.3 Start using	
3.3.1 Power on and start up	
3.3.2 Write a program	
3.3.3 Power off	34
Chapter 4 Mechanical Hardware and Installation	
4.1 Robot composition	
4.2 Work Space	
4.3 Load curve	
4.4 Flange interface	40
4.5 Installation interface	
4.6 Robot Specification	46
4.7 Control cabinet	47
4.8 Handle operator	
Chapter 5 Electrical Hardware and Installation	
5.1 End Interface	50
5.1.1 Pro terminal interface	50
5.1.2 Meaning of the indicator light strip	50
5.1.3 M8 Interface	50
5.2 Screen information	51
5.3 Control cabinet interface	
5.3.1 Overview of Electrical Interfaces	53
5.3.2 Safety Interface	54
5.3.3 General Input and Output Overview	55
5.3.4 External power connection method for digital input	
5.3.5 Internal power connection method for digital input	56
5.3.6 External power connection method for digital output	
5.3.7 Internal power connection method for digital output	58
5.3.8 Simulation input/output interface	59
5.3.9 CAN/485/IO interface	61
5.3.10 LAN Network Port	62
5.3.11 Communication input	63
Chapter 6 Maintenance and Warranty	64
6.1 Notes	
6.2 Daily inspection items	64
6.2.1 General cleaning	64
6.2.2 Control box	65

6.2.3 Robot	
6.3 System update	
6.3.1 Update steps	66
6.4 Common Mistakes	
6.4.1 Singularity/Inverse solution failure	68
6.4.2 Trigger collision detection	
6.4.3 Location/Speed Exceedance	70
6.4.4 Joint tracking error is too large	70
6.4.5 Alarm cleared	70
6.5 Fault code description	71
6.6 Disclaimer	71
6.7 Abandoned robots	72
Chapter 7 Overview of the Teaching Pendant Interface	73
7.1 Login interface	73
7.2 Home page	73
7.2.1 Switch tab area	74
7.2.2 Account Settings Button	74
7.2.3 Error message and real-time log window button	74
7.2.4 Full-screen display button	75
7.3 Project Tab	75
7.3.1 Quick operation area	76
7.3.2 Graphics Programming Area	77
7.3.3 Pose Zone	
7.3.4 Parameter Area	
7.3.5 3D Simulation	
7.3.6 Register	
7.3.7 I/O	
7.3.8 Variable Management	
7.3.9 Project Management Area	
7.3.10 Speed ratio adjustment area	
7.4 Settings tab	
7.4.1 Basic	93
7.4.2 Tools, load, coordinate system	95
7.4.3 Others	
7.4.4 Sports	
7.4.5 Register communication	
7.4.6 IO	
7.4.7 MODBUS Master	

7.5 Log tab	
7.6 Management tab	
Chapter 8 Introduction to Variables	
8.1 Variable Overview	
8.2 Variable	
8.2.1 POSE	
8.2.2 Basic Data Types	
8.2.3 SPEED	
8.2.4 ACC	
8.2.5 ZONE	
8.2.6 CLOCK	
8.2.7 Socket	
8.2.8 INTERRUPT	
8.2.9 LsScale	
8.2.10 LsThresh	
8.2.11 VibrationSuppression	
8.2.12 Matrix2	
8.2.13 Matrix3	
8.2.14 Matrix4	
8.2.15 Matrix9	
Chapter 9 Calibration	
9.1 Joint coordinate system	
9.2 World coordinate system	
9.3 Coordinate System and Calibration	
9.3.1 Three-point calibration method	
9.3.2 Use the user coordinate system	
9.4 Tools and Calibration	
9.4.1 Four-direction calibration method	
9.4.2 One-point calibration method (attitude)	
9.4.3 Use the tool coordinate system	
Chapter 10 Instruction Introduction	
10.1 Displacement Instructions	
10.1.1 MovJ	
10.1.2 MovL	
10.1.3 MovC	
10.1.4 MovCircle	
10.1.5 MovJRel	
10.1.6 MovLRel	
10.1.7 MovLSearch	

10.1.8 AddDo	
10.1.9 MovTraj	
10.2 Logical Instructions	
10.2.1 GoTo	
10.2.2 lf	
10.2.3 Elself	
10.2.4 Otherwise	
10.2.5 While	
10.2.6 =	
10.2.7 RETURN	
10.2.8 CALL	
10.2.9 RUN	
10.2.10 KILL	
10.2.11 Labeling	
10.3 Flow Control Instructions	
10.3.1 Wait	
10.3.2 WaitFinish	
10.3.3 WaitCondition	
10.4 IO Instructions	
10.4.1 SetDO	
10.4.2 SetAO	
10.4.3 WaitDI	
10.4.4 WaitDI8421	
10.4.5 WaitAl	141
10.4.6 GetDI8421	
10.4.7 GetDO8421	
10.4.8 SetDO8421	
10.4.9 GetDO	
10.4.10 GetDI	
10.4.11 GetAO	
10.4.12 GetAl	
10.5 Set instructions	
10.5.1 SetTool	
10.5.2 SetCoord	
10.5.3 SetPayload	
10.5.4 Stop	145
10.5.5 EnaVibraSuppr	145
10.5.6 DisVibraSuppr	145
10.5.7 ClsDectLevel	

10.6 Position Operation Instructions	
10.6.1 GetCurAPos	
10.6.2 GetCurCPos	
10.6.3 APosToCPos	
10.6.4 CPosToAPos	
10.6.5 CPosToCPos	
10.6.6 ToolOffset	
10.6.7 UserOffset	
10.6.8 CposOffset	
10.6.9 GetAxis	
10.6.10 GetCartesian	
10.6.11 Position Inverse	
10.6.12 PointsDistance	
10.6.13 InterpolationCpos	
10.6.14 TransformPlane	
10.6.15 GetTrajStartPoint	
10.6.16 GetTrajEndPoint	
10.7 Bitwise Operation Instructions	
10.7.1 BitAnd	
10.7.2 BitNeg	
10.7.3 BitOr	
10.7.4 BitLSH	
10.7.5 BitRSH	
10.8 Clock Instruction	
10.8.1 CLKStart	
10.8.2 CLKStop	
10.8.3 CLKReset	
10.9 Socket Command	
10.9.1 SocketCreate	
10.9.2 SocketClose	
10.9.3 SocketSendStr	
10.9.4 SocketSendReal	
10.9.5 SocketSendInt	
10.9.6 SocketReadReal	
10.9.7 SocketReadInt	
10.9.8 SocketReadStr	
10.10 Interrupt Instruction	
10.10.1 IConnect	
10.10.2 IDelete	

10.10.3 ITimer	
10.10.4 ICondition	
10.11 Modbus Commands	
10.11.1 GetModConState	
10.11.2 ReadSingleCoilReg	
10.11.3 ReadDiscreteInputReg	
10.11.4 ReadSingleHoldReg	
10.11.5 ReadInputReg	
10.11.6 WriteSingleCoilReg	
10.11.7 WriteSingleHoldReg	
10.12 Array Instructions	
10.12.1 SetMatrix2	
10.12.2 SetMatrix3	
10.12.3 SetMatrix4	
10.12.4 SetMatrix9	
10.12.5 GetMatrix2	
10.12.6 GetMatrix3	
10.12.7 GetMatrix4	
10.12.8 GetMatrix9	
10.13 String instructions	
10.13.1 APosToStr	
10.13.2 CPosToStr	
10.13.3 DAPosToStr	
10.13.4 DCPosToStr	
10.13.5 TranStrToIntArray	
10.13.6 TranStrToRealArray	
10.13.7 TranStrToApos	
10.13.8 TranStrToCpos	
10.13.9 TranStrToDApos	
10.13.10 TranStrToDCpos	
10.13.11 IntArrayToString	
10.13.12 RealArrayToString	
10.13.13 BoolArrayToString	
10.14 RS485 Instructions	
10.14.1 RS485Init	
10.14.2 RS485Read	
10.14.3 RS485Write	
10.14.4 RS485FlushReadBuffer	
10.15 Mathematical operation functions	

10.15.1 sin	
10.15.2 cos	
10.15.3 tan	
10.15.4 asin	
10.15.5 acos	
10.15.6 atan	
10.15.7 atan2	
10.15.8 sinh	
10.15.9 cosh	
10.15.10 tanh	
10.15.11 log	
10.15.12 log10	
10.15.13 sqrt	
10.15.14 exp	
10.15.15 pow	
10.15.16 deg	
10.15.17 rad	
10.15.18 fmod	
10.15.19 floor	
10.15.20 random	
10.16 String Functions	
10.16.1 byte	
10.16.2 char	
10.16.3 find2	
10.16.4 findEnd	
10.16.5 format	
10.16.6 getAt	
10.16.7 gsub	
10.16.8 len	
10.16.9 left	
10.16.10 lower	
10.16.11 right	
10.16.12 reverse	
10.16.13 strcmp	
10.16.14 trimLeft	
10.16.15 trimRight	
10.16.16 upper	
10.16.17 IToStr	
10.16.18 RToStr	

10.16.19 StrTol	
10.16.20 StrToR	
10.16.21 Append	
Appendix to Chapter 1	195
11.1 Error Codes	195
11.2 User Levels and Permissions	
11.3 Declaration	
Chapter 12 Spare Parts List	
Chapter 13 Contact Information	204

Chapter 1 Preface

1.1 Safety

Thank you for purchasing and using our company's robot, it only passed two functional safety certifications of EN ISO 13840-1:2023:

1. the performance level of the emergency stop circuit for the above model of robot is Pl d.

2. the nennrmance level of the protective stop circuit for the above model of robot is maximum PL d.

1.2 Nameplate

You can find information such as the model of the robot on its arm.

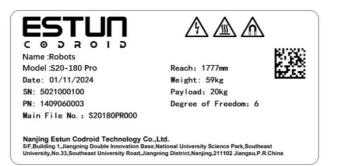


Figure 1-1 Robot Arm Nameplate

You can find information such as the model of the control cabinet on the control cabinet itself.

Figure 1-2 Control Cabinet Nameplate

1.3 How to Use This Manual

This manual describes the hardware composition of the Codroid robot and the operation of its teaching control system, which is helpful for users to understand and master the functions, technical specifications, installation and usage of the Codroid robot.

This manual is applicable for customers, sales engineers, installation and commissioning engineers,

technical support personnel, etc.

This manual contains methods on how to protect users and prevent machine damage. Users need to read all relevant descriptions in the manual and be fully familiar with the safety precautions.

In this manual, we have tried to describe various situations. However, due to the vast number of possibilities, it is impossible to record all the situations that should not be done or cannot be done.

1.4 Copyright and Trademark

Estun CoDroid, CoDroid EIP, CoBrain, CoDrive, CoSense, CoSafe, CoTool are registered trademarks of Estun CoDroid. All rights reserved @ Nanjing Estun CoDroid Technology Co., Ltd.

Without the written permission of the Company, no unit or individual may excerpt, copy in part or in whole, or disseminate the content of this document in any form.

1.5 Disclaimer of the Manual

Before using this product, please read this user manual and the relevant technical documents published online in detail and understand the information. Make sure to use the robot only after fully understanding the robot and related knowledge. We recommend that you use this manual under the guidance of professionals. All safety information contained in this manual shall not be regarded as a guarantee by Codroid. Even if you follow this manual and related instructions, harm or loss may still occur during use.

1.6 Common Terms

1.6.1 Robot

Fixed or mobile automatic machinery that can be automatically controlled, repeatedly programmed, multi-purpose, and programmed for three or more axes, used in industrial automation.

1.6.2 Maximum workspace

The space that the robot's moving parts can sweep through, plus the space that can be swept by the end effector and the workpiece during their movements.

1.6.3 Precision

The deviation of position and attitude between the average value of the commanded distance and the actual distance.

1.6.4 Repeatability accuracy

The consistency of the actual distance reached after repeating the movement in the same direction for the same instruction distance n times.

1.6.5 Trajectory accuracy

The maximum trajectory deviation along the obtained trajectory in terms of position and orientation.

1.6.6 Trajectory repetition accuracy

The consistency of the actual trajectory when a robot repeats the same instruction trajectory n times.

1.6.7 Tool Center Point (TCP)

Points set for a certain purpose with reference to the mechanical interface coordinate system. (Ref. GB/T 12643-2013, Definition 4.9)

1.6.8 Payload

It refers to all the loads attached to the robot flange excluding the weight of the tool.

1.6.9 Protective stop

A form of operation interruption that allows for the orderly termination of a process for safety reasons while maintaining the program logic to enable a restart.

1.6.10 Singularity (Singular Point)

The situation where two or more axes of a robot are collinear, resulting in uncertainty in the robot's motion and speed.

1.7 Revision Record

Material Number	Version	Release Data	Description
1210002200	V1.0	20250401	Initial version

Chapter 2 Safety Information

2.1 Validity and Responsibility

The information in this manual does not cover the design, installation and operation of a complete robot application, nor does it include all the peripheral equipment that may affect the safety of this complete system. The design and installation of the complete system must comply with the safety requirements established in the standards and regulations of the country where the robot is installed.

Estun Codroid integrators are responsible for ensuring compliance with applicable laws and regulations of the relevant countries and ensuring that there are no significant hazards in the complete robot application. This includes but is not limited to the following:

Conduct a risk assessment of the entire robot system.

Connect other mechanical and additional safety devices defined in the risk assessment together.

Make appropriate security settings in the software.

Ensure that users cannot modify any security measures.

Confirm that the design and installation of the entire robot system are accurate and errorfree.

Good understanding on this instruction

Mark the relevant logos and contact information of the integrator on the robot.

Collect all the documents in the technical files; including the risk assessment and this manual.

2.2 The warning symbols appointed in this manual

The following safety warning signs may appear in this manual. Their meanings are as follows:

Warning

This sign indicates a potentially dangerous electrical situation. If not avoided, it may cause death or serious injury to personnel or severe damage to equipment.

Warning

This sign indicates a potentially dangerous situation. If not avoided, it may cause death or serious injury to people.

Warning

This sign indicates a potentially dangerous electrical situation. If not avoided, it may cause personal injury or severe damage to equipment.

Warning

This sign indicates a potentially dangerous situation. If not avoided, it may cause personal injury or serious damage to equipment.

Warning

This sign indicates a potentially dangerous electrical condition. If not avoided, it may cause personal injury or serious damage to equipment.

Warning

This sign indicates a potentially dangerous hot surface. Contact with it may cause personal injury.

Warning

This symbol indicates a situation that, if not avoided, can lead to serious damage.

2.3 Safety Precautions

- Make sure that the robot arm and the tool/end effector are both correctly and securely fastened in place with bolts. Ensure that the robot arm has sufficient space to move freely.
- Ensure that the safety measures and/or robot safety configuration parameters as defined in the risk assessment have been established to protect programmers, operators and bystanders.
- When operating the robot, please do not wear loose clothing or jewelry. Make sure long hair is tied back when operating the robot.
- If the robot is damaged, do not use it, for example, when the joint cap is loose, damaged or removed.
- Never put your fingers into the control box.
- Do not connect any safety devices to the standard IO interface. Only the safety IO interface can be used.
- Ensure correct installation settings (such as the installation angle of the robot, the weight in TCP, TCP offset, and safety configuration).
- Only after a risk assessment is conducted can the drag-and-drop teaching function be used during the installation process.

- The tools/end effectors and obstacles must not have sharp corners.
- Ensure that people are warned to keep their heads and faces out of the reach of robots that are in operation or about to start operating
- When using the teaching pendant, pay attention to the movement of the robot.
- If a risk assessment has been determined, do not enter the safe confines of the robot or touch the robot while the system is in operation.
- Connecting different machines may increase the risk of danger or cause new hazards. Always conduct a comprehensive risk assessment of the entire installation.
- Do not modify the robot. Any modification to the robot may cause unpredictable dangers. Any authorized reconfiguration of the robot must be carried out in accordance with the latest version of all relevant service manuals.
- Ensure that robot users are aware of the location of the emergency stop button and are instructed to activate it in case of an emergency or abnormal situation.
- The robot and the control box will generate heat during operation. Do not touch the robot when it is running or has just stopped. You can cool down the robot by turning it off and waiting for one hour.
- When the robot is connected to or works together with machinery that could cause damage to the robot, it is strongly recommended to test all the functions of the robot and the robot program separately.
- Do not expose the robot to magnetic fields, fire, explosive hazards, radio interference, liquids, etc. for an extended period of time, as this may damage the robot.
- The robot system is not permitted to be used in explosive or potentially explosive environments.
- When the equipment is in operation, even if the mechanical arm appears to have stopped while waiting for a start signal, it should still be regarded as in motion. Please do not approach the mechanical arm.
- During the processes of transporting, installing, operating and maintaining robots, operators must wear safety gloves, glasses, anti-crush shoes and other safety protective equipment to avoid dangerous injuries.

2.4 Safety Requirements

The safety functions generally comply with the ISO 10218-1 standard, and specifically meet the following requirements.

When safety-related control systems are required, the design of safety-related components should be such that:

- The failure of any single component will not result in the loss of safety functions.
- Where practicable, a single fault shall be detected before or at the next demand on the safety function.

- When a single fault occurs, the safety function should always be in operation and maintain a safe state until the detected fault is repaired.
- · All reasonably foreseeable faults should be detected.

This requirement is regarded as equivalent to the Category 3 structure as described in ISO 13849-1. Category 3 is typically achieved through redundant circuits. The safety function and the robot controller comply with Performance Level (PL) d as stipulated in ISO 13849-1.

2.5 Safety Disclaimer

This manual does not provide comprehensive information on the design, installation and operation of the robot in conjunction with other equipment, nor does it cover the possibility of the impact of such use on surrounding equipment.

The safety of a robot installation depends on how the robot is integrated, and the integrator needs to conduct a risk assessment of the design and installation of the system in compliance with the laws and regulations of the country where it is installed, as well as safety codes and standards.

Risk assessment is one of the most important tasks that an integrator must complete. The integrator can refer to the following standards to carry out the risk assessment process:

- ISO 12100:2010 Safety of machinery General principles of design Risk assessment and risk reduction;
- ISO 10218-2:2011 Robots and robotic devices Safety requirements Part 2: Industrial robot systems and integration
- RIA TR R15306-2014 Technical Report on Industrial Robots and Robot Systems -Safety Requirements, Task-based Risk Assessment Method
- ANSI B11.0-2010 Machinery Safety; General Requirements and Risk Assessment.

2.6 Limitation of Liability

Any safety information contained in this manual should not be regarded as a guarantee for our company's robots. Many matters cannot be described in detail, and there is still a possibility of causing injury or damage.

Our company is committed to continuously improving the reliability and performance of our products and reserves the right to upgrade the products without prior notice. We are not responsible for any errors or omissions in this manual and reserve the right of final interpretation of this manual.

2.7 Stop category

Туре 0	Uncontrolled stop, which stops the robot by immediately	
	disconnecting power to the actuator.	
Type 1	Controlled stop, where the actuator actively brakes but does not	

	ensure that the robot stops on its trajectory. After the robot has stopped, the power supply is cut off.
Туре 2	Controlled stop, where the actuator actively brakes and ensures that the robot stops in its trajectory. The robot stops without disconnecting the power supply.

In accordance with the IEC 60204-1 standard, Codroid robots are equipped with three stop categories, namely Stop Category 0 (Cat.0), Stop Category 1 (Cat.1), and Stop Category 2 (Cat.2). Among them, Stop Category 0 is an uncontrolled stop, while Stop Categories 1 and 2 are controllable stops.

According to IEC 60204-1 and ISO 13850, emergency equipment is not a safety guard device. They are supplementary protective measures and are not used to prevent injuries.

In case of an emergency, press the emergency stop button to immediately halt all movements of the robot and lock it in place. The emergency stop function should not be used as a risk reduction measure but can be regarded as a secondary protection device for use only in critical situations.

Under normal circumstances, if it is necessary to stop the robot's movement, please use other methods. After a risk assessment, if an emergency stop button needs to be installed, it must comply with the requirements of IEC-60947-5-5.

When the emergency stop button is pressed, the robot system will cut off the power supply to the robot, and the brake devices between the robot's joints will automatically lock the joints. However, due to the effect of gravity, slight movement of the robot body is a normal phenomenon, but this may also pose a risk of pinching or colliding with the human body.

The implementation of the stop category relies on the joint driver, for further description, refer to IEC 61800-5-2.

Emergency stop and protective stop functions are implemented through the safety interface. For details, please refer to Section 5.3.2.

2.8 Risk assessment

Before installing or using this product, users must conduct necessary risk assessments based on the usage conditions and carefully read the residual risks that may exist in the company's stated values. For relevant content, please refer to the corresponding software and hardware version manual.

2.9 Safety function

The safety functions of the CoDroid robot are shown in the following table.

Safety function	Description
Emergency stop	When the emergency stop button is pressed, stop category 1 is activated.
Protective stop	When the relevant signal input is low, activate stop category 2. this

	function needs to be manually react		
	function needs to be manually reset.		
Safety rated deceleration	When the correlation signal input is low, it will reduce the TCP		
control	speed to the limit.		
Joint position limitation	Sets the limit range of allowable joint positions.		
Joint speed limitation	Sets the limit range for the allowable joint speed.		
Joint torque limitation	Sets the limit range of allowable joint torque.		
TCP location Limitation	Sets the limit range of allowed TCP locations.		
TCP speed Limitation	Sets the maximum TCP rate.		
TCP torque limitation	Set the maximum torque of TCP.		
Robot Power Limit	Limit the maximum power of the robot.		
TCP Directional Limit	Sets the direction limits allowed by the tool.		
Security-grade monitoring	When the relevant signal input is low, activates Stop Category 2.		
downtime	This function can be reset when the relevant signal input signal is		
	low.		
Speed and distance	Maintain a minimum protective distance between the operator and		
monitoring	the robot. The robot system stops when the separation distance		
	decreases below the protective distance. The robot can		
	automatically resume motion when the operator leaves the robot		
	system.		
Power Torque Limit	Limit the maximum power and torque of the robot.		

2.10 Emergency stop recovery

When the emergency stop button is pressed, it will be locked. To unlock it, rotate the button as indicated on it. Only after unlocking can the alarm be cleared through the control software, and then power on and enable to restore from the emergency state.

2.11 Forced drive without power

In case of an emergency, if it is necessary to move the robot's joints but it is impossible or unnecessary to power on the robot, manual forced drive without power can be used.

To perform a no-power forced drive, you must push or pull the robot arm forcefully to move the joints. Each joint brake has a brake that allows the joint to move under high-torque conditions.

Manual movement without power drive is only for emergency situations and will affect the service life of the brake device.

2.12 Stopping time and stopping distance

Provide reference stopping distance and stopping time data for joint 1 (base), joint 2 (shoulder), and joint 3 (elbow):

- Class 0
- Class 1
- Class 2

The test for joint 0 is conducted through horizontal movement, that is, the rotation axis is perpendicular to the ground.

During the tests at joint 1 and joint 2, the robot followed a vertical trajectory with the rotation axis parallel to the ground and performed a stop operation when the robot moved downward.

The robot arm is fully extended horizontally.

The general speed of the robot is set at 100%, and it moves at the maximum speed of the joints.

The maximum effective payload that the robot can handle.

The following table shows the measured stopping distance and stopping time of the 3kg robot when it triggers a Class 1 stop under the above conditions. For test data of other models, please consult our technical staff.

The following data is for reference only. Depending on the application scenarios and usage conditions of the robot, the results of the stopping distance and stopping time may vary.

Position	Stopping distance (rad)	Stopping time (ms)
Joint 1 (base)	0.30	282
Joint 2 (shoulder)	0.29	287
Joint 3 (elbow)	0.29	237

2.13 Storage, usage and transportation conditions

- The ambient temperature during storage and operation should be between 0 and 40°C.
- Places with less humidity and drier. Relative humidity of 10%-90% without condensation;
- Places with little dust, powder, grease fumes and water.
- No flammable materials, corrosive liquids or gases are allowed in the work area.
- For places where the vibration or shock energy on the electrical control cabinet is small (vibration below 0.5G);
- There should be no major electrical noise sources nearby (such as gas shielded welding TIG equipment, etc.);
- There is no potential risk of collision with mobile devices such as AGVs.
- The control box should be installed outside the robot's operating range (beyond the safety fence).
- The control box should be at least 200mm away from the wall to keep the heat dissipation channel unobstructed.

2.14 Control cabinet and body identification

The following signs and nameplates are attached to locations where specific dangers may occur. To prevent accidents, please strictly follow the instructions and contents of

the signs when operating. Do not tear, damage or remove the signs at will. Be especially careful when handling the components or units to which the signs and nameplates are attached and the surrounding areas.

А		The equipment must be operated and maintained by
		specialized personnel with personal protection.
		Make sure to follow the hardware setup instructions. Avoid
		using the product incorrectly and causing damage to the
		machine or other equipment, or injury to personnel.
В		Do not open the control cabinet and body to touch the
		internal electronics and circuitry to avoid electric shock.
		There is a risk of fire or electric shock.
		Always use appropriate personal protective equipment to
		protect against the risk of arc flash, failure to follow this
		code may result in personal injury or death.
С		Hot surfaces that can be hazardous and can cause injury if
		contact occurs.
D	\wedge	The robot body has a magnetic field inside, which may be
		harmful to the body and electronic equipment.
E		Product nameplate to confirm basic product information
	Monder (30) 100 Files Based: 1777am. Date: 0/11/2020: Weighter: 186g DB: 582(500100) Payl cadi. 256g PH: 1007060020 Diagnos of Freedom: 6 Built: 101706000 Diagnos of Freedom: 6	
	Registre Delan Carlosi Technikay Co. 196. Biolariany Caregory Social monoto Elementaria d'accesto, Sanco Faccicationi Monoto, de 20 actives de la construcción de la construcción de la construcción de la construcción de la constru Monoto, de 20 actives de la construcción de la construcción de la construcción de la construcción de la constru	

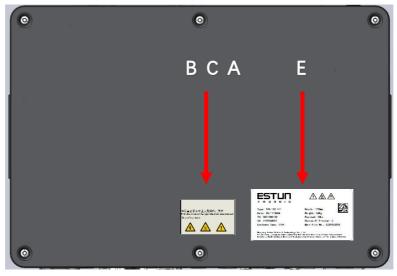


Figure 2-1 Control Cabinet Marking, Nameplate Position

Figure 2-2 Labeling and Nameplate Position for Bodies Weighing 10kg or Less

Figure 2-3 20kg Body Marking, Nameplate Position

Chapter 3 Quick Start

3.1 Confirmation of packing contents

Before using the robot for the first time, the user needs to read and understand the safety information in this manual and the safety configuration parameters in the settings.

After the product arrives, please check the shipping list. A standard shipping list includes the following five items (optional information will be provided separately). The robot body and the control cabinet are packed in two separate boxes. The robot body package only contains the robot body, while the control cabinet package includes the controller body, hand controller, cables connecting the body and the controller, power cables, etc.

Figure 3-1 Contents of the Carton

3.2 Robot installation

3.2.1 Transportation

Keep the original packaging intact during transportation. Store the packaging materials in a dry place; they may be needed for repacking and moving the robot later. Move the robot from the packaging materials to the installation location:

When installing the robot arms of S3-60, S5-90 and S10-140, the two die-cast connecting rods of the robot arm can be lifted simultaneously. Hold the robot until all the installation bolts of the robot base are tightened. Please refer to 3.2.2 for handling.

When handling the S20-180 robot arm, please refer to 3.2.2 Handling.

WARNING
When moving and handling the equipment, the operator should
wear safety gloves, glasses, anti-smash shoes and other safety
protection equipment to avoid dangerous injuries during the
moving and handling process.

WARNING
- Ensure that no excessive weight is placed on the back or other
body parts when lifting the equipment. Use appropriate lifting
equipment.
Follow all regional and national lifting guidelines. Universal
Robots is not responsible for any damage caused by
transportation of the equipment.
- Ensure that the robot is mounted according to the mechanical
interface as described in 3.2.3 Mounting and 4.5 Mounting
Interface of these instructions.
- If the robot needs to be precisely positioned, it can be
positioned by pins through the two pre-drilled holes.

WARNING
- Ensure that the robot is mounted correctly and in a position that
avoids vibration.
- Turn off the power to the robot arm during mounting and
dismounting to prevent accidents.
Turn off the power:
- Return to the packing position during disassembly.
- Turn off the robot by pressing the power button on the
actuator.
- Disconnect the power plug.

3.2.2 Handling

WARNING

When moving and handling the equipment, the operator should wear safety gloves, glasses, anti-smash shoes and other safety protection equipment to avoid dangerous injuries during the moving and handling process.

3.2.2.1 Manner of handling robots weighing 10kg or less

a) Transportation and Unpacking

Figure 3-2 Transportation and Unpacking Diagram for 10kg and blow

b) Install the lifting straps and use the hook to lift the robot arm.

Figure 3-3 Schematic Diagram of the Position of Lifting Straps for 10kg and Below

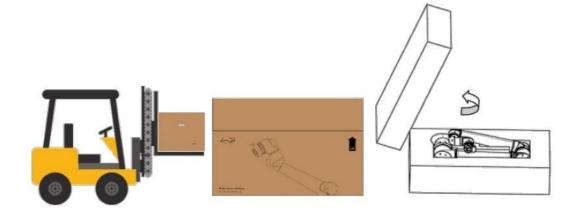

c) Installation

Figure 3-4 Installation Diagram for 10kg and Below

3.2.2.2 20kg robot handling method

a) Transportation and Unpacking

b) 2. Install the lifting slings and use the hook to lift the robot arm.

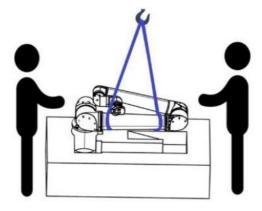


Figure 3-6 Schematic Diagram of the Position of the 20kg Lifting Strap

c) Installation

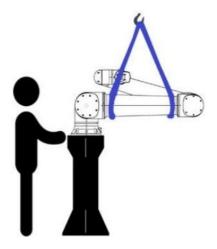
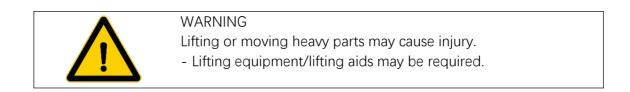
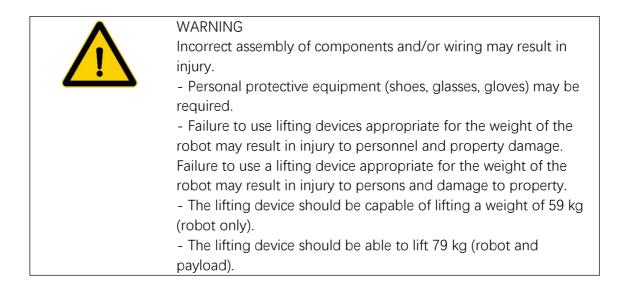




Figure 3-7 Installation Diagram for 20kg Model

Lifting sling usage: The lifting sling selected should comply with the following standards under the premise of meeting the load of this product:

European Standard:

• BSEN1492-1:2000 + A1:2008 Textile slings - Safety - Flat webbing slings, made of man-made fibers, for general purposes.

•BS EN 1492-2:2000 + A1:2008 Textile slings - Safety - Round slings made of synthetic fibers for general purposes.

Chinese standard:

• JB/T8521.1-2007 Safety of woven slings - Part 1: Flat web slings for general purposes made of synthetic fibers

• B/T8521.2-2007 Safety of woven slings - Part 2: General purpose synthetic webbing slings for round lifting

WARNING
Using a round sling without inspection may result in injury.
 Inspect slings before and after each use.
 If possible, check the slings during use.

WARNING
Using a damaged round sling may result in injury.
- Inspect slings before and after each use.
- Do not use if sling is cracked, torn or has loose stitching.
- Do not use if sling shows signs of heat damage.
- Protect slings from sharp edges and friction.
- Do not tie knots in the sling.
- If possible, check the sling during use.

3.2.3 Installation

WARNING Before performing safety sensing on the equipment, confirm that the operator needs to wear safety gloves, glasses, anti-smash shoes and other safety protection equipment to avoid dangerous injuries during installation.

Mount the robot arm using bolts of at least grade 12.9 strength and the mounting holes in the base as shown. See Section 4.5 for robot base mounting dimensions.

ltem	S3-60	S5-90	S10-140	S20-180
Bolt	M6	M8	M8	M12
Quantity	4	4	4	4
Flat washer	Ф6	Ф8	Ф8	Ф12
Locating pin	Ф4	Ф6	Ф8	Ф8
Torque	>=10N·m	>=20N·m	>=35N·m	>=70N·m

The recommended installation torque is as follows:

The robot needs to be installed on a solid and vibration-free support surface. The support must be capable of withstanding at least ten times the full torsional force of the

first joint and at least five times the weight of the robotic arm.

Figure 3-8 Ontology Installation

The robot can be installed in any position and orientation, supporting various installation methods such as overhead and side mounting. For non-vertical installations, the installation angle of the robot needs to be set in the robot settings. For the installation method of the robot body and the setting method of the installation angle in non-vertical installations, please consult our technical personnel.

Cable Connections

Before powering up the robot, you need to connect the robot cables according to the cable connection diagram in Figure 3-9.

Network cable: connects the controller to the tablet for controlling the robot's movements.

Hand controller: used for controlling the emergency stop, enabling and power on/off of the robot.

Control cable: used to provide power and communication for the robot body;

Power cable: Provides power for the robot system.

WARNING

Before energizing the robot, check that the voltage and frequency of the power supply meet the requirements; accessing the wrong voltage can cause the robot to malfunction.

WARNING

A power cord is included in the package, but since single-phase power outlets vary from country to country and region to region, please purchase a power cable that meets the requirements according to the customer's region.

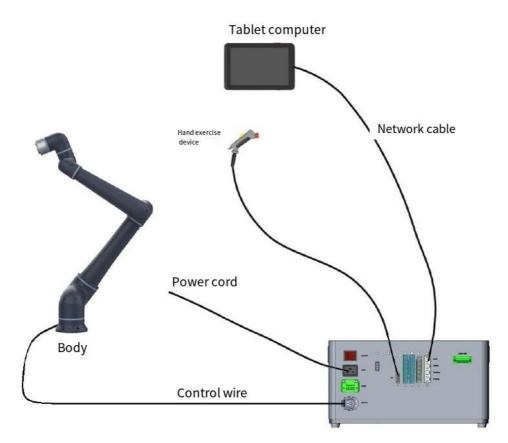
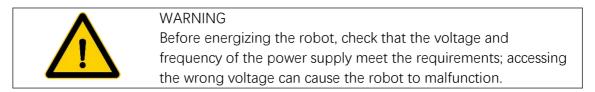


Figure 3-9 Schematic Diagram of Cable Connections

3.2.4 Operation position layout


The positions of the operator, the robot body and the control cabinet equipment are as shown in the operation position layout diagram in Figure 3-10.

Suggestion: When the robot is in operation, the operator should stand outside the reach of the robot's arm to ensure personal safety.

This robot is equipped with a collision detection function and complies with the IOS/TS 15066:2016 standard.

Refer to the content described in Section 4.2 on the workspace to ensure that the operator operates the robot outside the robot's workspace area. Do not operate the robot when there are people inside the robot's workspace area.

Refer to the content described in Section 4.7 for the placement of the control cabinet. Ensure that the control cabinet is installed in a well-ventilated, flat and vibration-free environment.

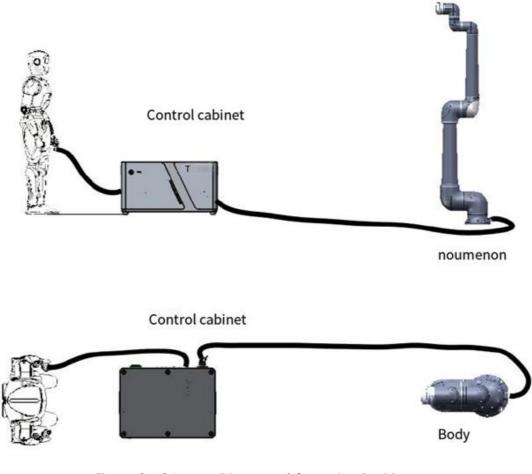


Figure 3-10 Layout Diagram of Operating Positions

3.3 Start using

After completing the above tasks, you can start using the robot.

3.3.1 Power on and start up

When the robot cables are properly connected, power on the system and turn on the switch at the power connection of the controller. At this point, you can hear the controller's fan start working. Then press the power-on button on the front of the control box. The button will turn green and stay lit, indicating that the control box has been powered on.

2. Wait until the light strip at the end of the robot turns into a constant white light and the small screen at the end of the arm shows "Communication [Real-time]" and "Operation [Normal]". This indicates that the controller has been successfully started and the robot body has established communication with the controller. At this point, you can log in to the web page to control the robot.

3. Turn on the tablet and modify its static IP address to 192.168.101.XXX through the settings.

4. Open the browser and enter the robot's IP address: 192.168.101.100:9098 in the address bar. Press Enter to jump to the login page as shown in Figure 3-11. If you cannot jump to the login page, please check the IP address of the tablet. If you still cannot

access the login page, please contact the after-sales service personnel.

	ĘŗŢĻŅ	
uv	Username	
(1) (1)	LOGIN ▲ Enter Account Login Or Contact Administrator 다 Online Settings	
	Web Version 1.6.1	
empty Cache		

Figure 3-11 Login Page

5. You can log in to the control page by entering your account and password. The initial accounts and passwords available for use are as follows. Different accounts have different permissions. For details, please refer to the appendix.

Account	Password
User	123456
Admin	123456

6. After logging in, you can jump to the robot control page, at this time you can carry out the power-up operation, before powering up, you need to make sure that the emergency stop button on the hand manipulator has been reset, and there are no people and equipment within the robot's range of motion. Click the button

"Power On power on" in the "3D Simulation" view, as shown in Figure 3-12 Robot Control Interface, you can hear the sound of the brake release at the joints, indicating that the joints are powered up.

Figure 3-12 Robot Control Interface

7. As shown in the main interface of Figure 3-13, it indicates that the robot has been powered on successfully. Now, you can control the robot to move.

Figure 3-13 Main Interface

3.3.2 Write a program

In manual mode, the robot can perform joint jogging and end-effector jogging.

Joint point movement: It enables the control of the robot to perform single-joint movements. The speed of point movement can be adjusted manually by changing the speed ratio. a1, a2, a3, a4, a5, and a6 respectively represent the six joints of the robot.

Endpoint jogging: It enables the control of the robot's movement in the Cartesian coordinate system. The jogging speed can be adjusted by changing the manual speed multiplier. The reference coordinate system during the robot's movement can be changed by switching between the current coordinate system and the tool coordinate system. x, y, and z represent the directions of the three axes of the reference coordinate system, while a, b, and c represent rotations around the x, y, and z axes of the reference coordinate system, respectively.

- a) In manual mode, control the robot to move to the target point.
- b) Click "POINTS pose", click "CPOS" to record a point P1;
- c) Jog the robot to another position and repeat steps 1 and 2 to add the second point, as shown in Figure 3-14.

d) Select "Move jogging" in the left instruction column and click or directly drag

and drop instruction "<u>MovL</u>" to add a motion instruction to the right program tree;

e) Select " moving in the program tree, click " parameters",

the corresponding parameter column of the instruction will appear, the target position select the point P1 set just now, and the target speed select the system default V100, when the instruction parameter page doesn't show the red error word, it means that the setting of the instruction is completed;6. Repeat Step 5 and add another instruction with its parameters set.

f) Repeat step 5 to add another command and set the parameters.

- g) 7. Add the "Label" instruction from "Logic" logic" and drag it to the first line of the program.
- h) Adding the "Goto" instruction in "Logic" logic" and selecting the jump node as Start allows the program to run continuously and repeatedly, as shown in Figure 3- 15 below.

- i) Click "Click" to save the program, there will be a pop-up when it is saved;
- j) Click "^{switch to}" and select OK to switch the robot to automatic mode
- k) Click " to select Auto Execute and the robot will move from P1 to P2.
- I) Select and confirm to switch the robot to automatic mode.


- m) Click on "<u>u</u>" to pause the robot program and the robot will pause its movement at the same time.
- n) After the robot has paused, click on " resume running the robot program.
- o) Clicking on " will stop the robot program and the robot will stop moving.
- p) If the robot is manually moved or stopped after the program has been paused, it will need to be switched to manual mode first, and then switched to

automatic mode again after robot "Point to continue running" move to running move to running resume point to continue running" before the program can continue to run.

3.3.3 Power off

Adjust the robot's attitude to the proper position, click

the robot powers down, then press and hold the power button on the controller until the always-on green light goes out to release the button.

Version V1.0

Chapter 4 Mechanical Hardware and Installation

4.1 Robot composition

The Codroid S series robot features six rotating motion joints, a large arm and a small arm as connecting rods. The base of the robotic arm is equipped with an aviation plug, the end of the robotic arm is equipped with a button and an indicator light, and the side of the tool flange is equipped with a button, a screen and an aviation plug.

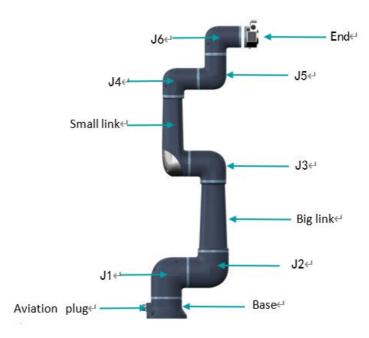
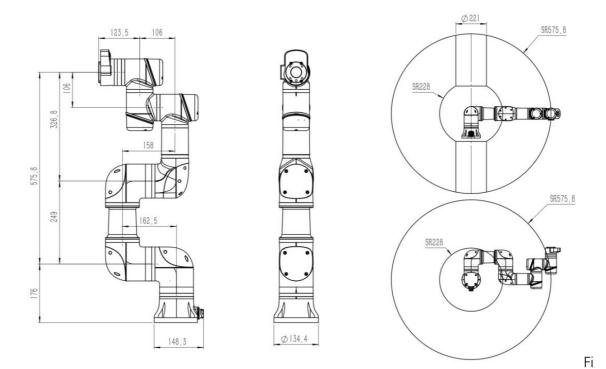



Figure 4-1 Composition of S Series Robots

4.2 Work Space

When choosing the installation location for the robot, it is essential to consider the cylindrical space directly above and below the robot. It is necessary to avoid moving the tool towards this cylindrical space, as doing so would lead to entering the singularity point, causing the joints to move too fast during operation. This would result in low robot efficiency and make risk assessment difficult.

$\mathbf{\wedge}$	WARNING
	When the robot is operated in manual mode (taught), personnel should be outside the safe guarding space. The emergency stop button of the robot hand manipulator must
	be within reach in manual mode, and at least one emergency stop switch needs to be set outside the robot's range of motion.
	The robot's range of motion is the maximum range of motion of the body when the robot does not have any motion limits set.
	Robot movement limits can be set so that all operations do not fall outside the maximum range of motion of the robot body.

gure 4-2 Dimensions and Working Space of S3-60

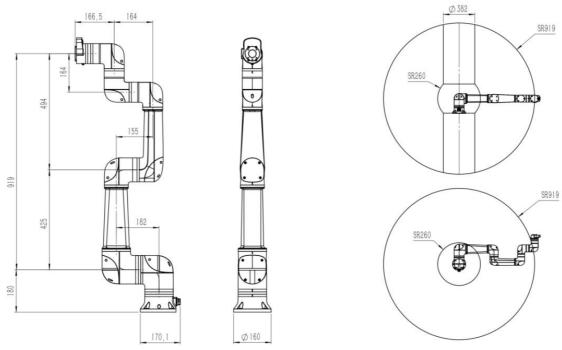


Figure 4-3 Dimensions and Working Space of S5-90

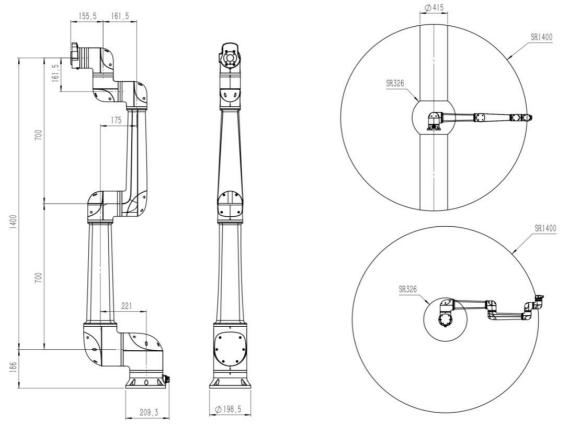


Figure 4-4 Dimensions and Working Space of S10-140

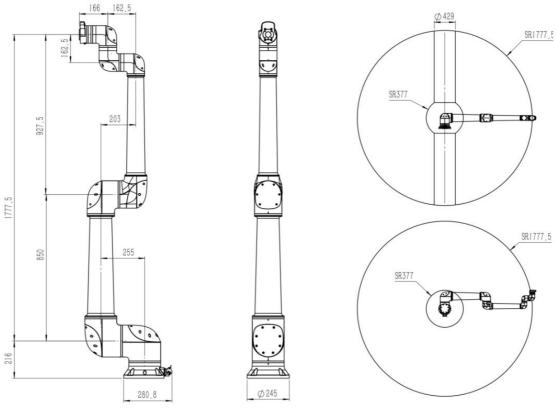
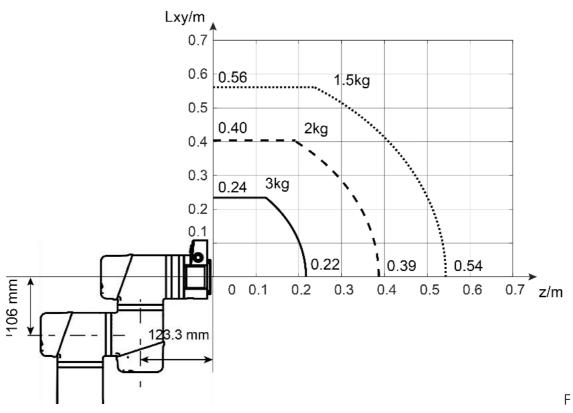


Figure 4-5 Dimensions and Working Space of S20-180

4.3 Load curve

The maximum allowable payload of a robotic arm depends on the offset of the center of gravity. When the distance of the load's center of gravity increases, the load that the robot can bear decreases. According to the eccentric distance of the load, with the eccentric distance on the XY plane as the ordinate and the value of Z as the abscissa, find the corresponding coordinate point of the eccentric load. Observe under which curve this


point lies. The load indicated by that curve is the maximum load that the robot can bear under the current working condition.

The total load of the tools and workpieces loaded at the end of the robot must not exceed the maximum load.

WARNING

When calculating loads, the weight of the media flange must be included and ensured to meet the robot's load specifications. Ensure that the system never exceeds the maximum allowable load. The user should carry out a full risk assessment of the media flange and the workpiece to avoid shock, vibration, crashing, entanglement, puncture, puncture and other hazards. Ensure the overall safety of the system.

igure 4-6 Payload Curve of S3-60

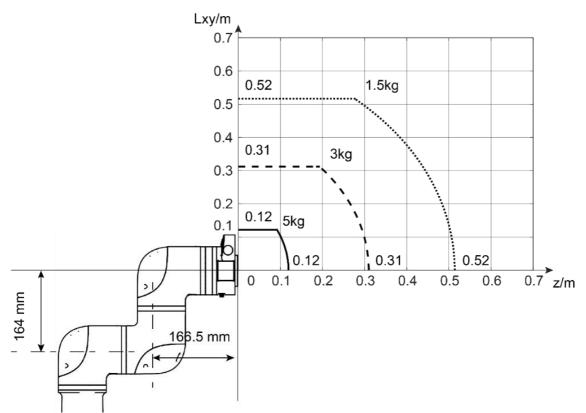


Figure 4-7 Payload Curve of S5-90

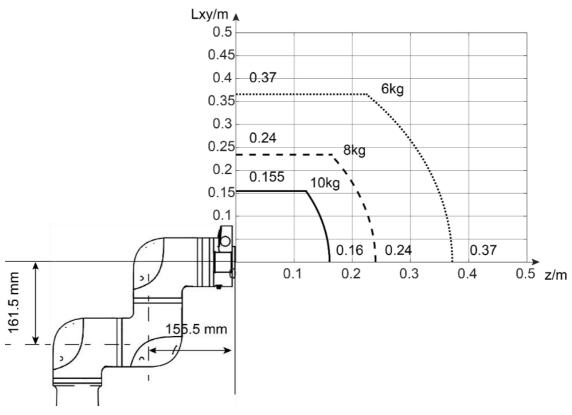
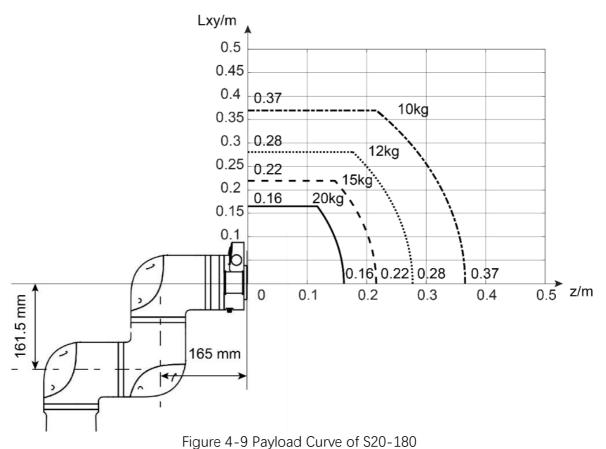



Figure 4-8 Payload Curve of S10-140

4.4 Flange interface

The end flanges of the S series robotic arms all have the same size. Each flange has four M6 threaded holes, which can be used to attach tools to the robot. The flange design complies with the national standard GB/T 14468.1-50-4-M6 (or ISO 9409-1-50-4-M6).

The M6 screws must be tightened with a torque of 12Nm, and their strength grade is 12.9. To accurately reposition the tool, please use a pin in the reserved Ø6 hole to maintain the precise position. The screw insertion depth for installing the tool must not exceed 8mm.

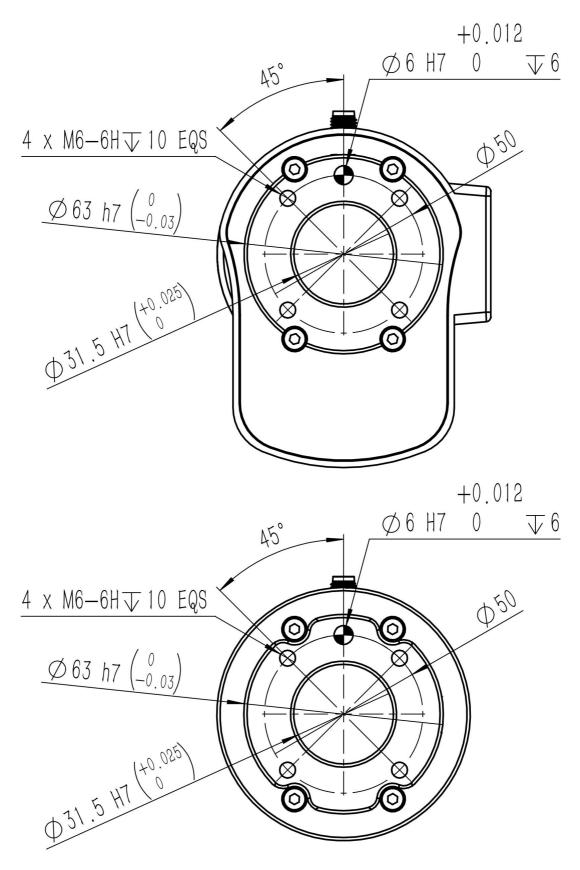


Figure 4-10 Mechanical Installation Interface of S3-60 Pro and Eco Flange

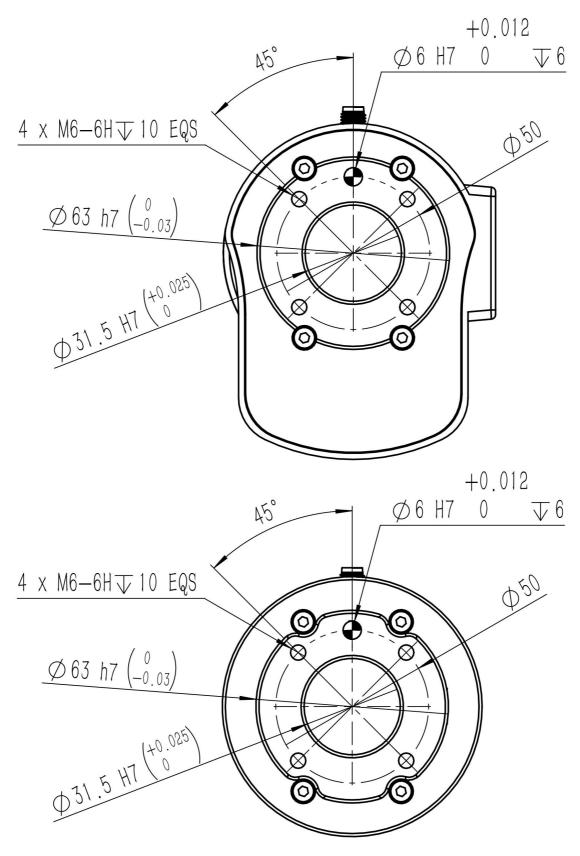


Figure 4-11 Mechanical Installation Interface of S5-90 Pro and Eco Flange

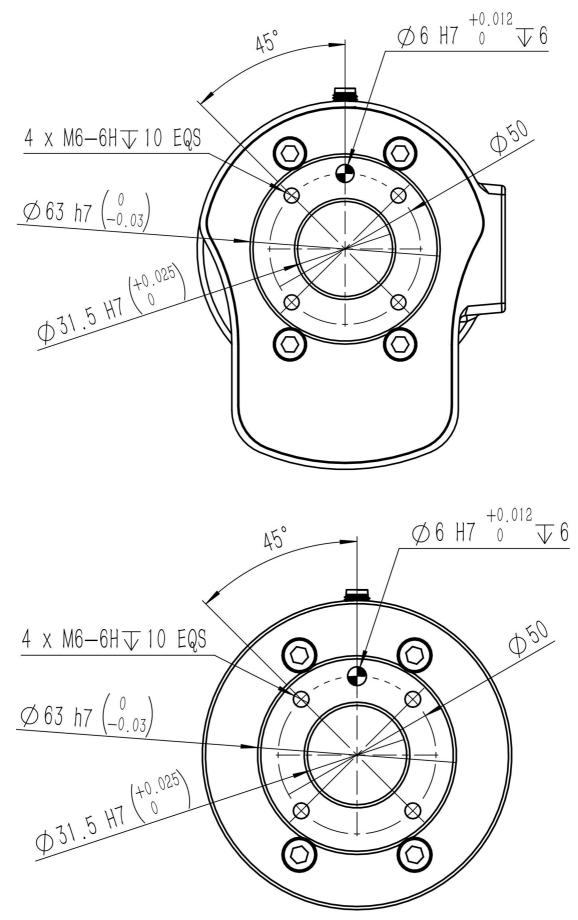


Figure 4-12 Mechanical Installation Interface of S10-140 Pro and Eco Flange

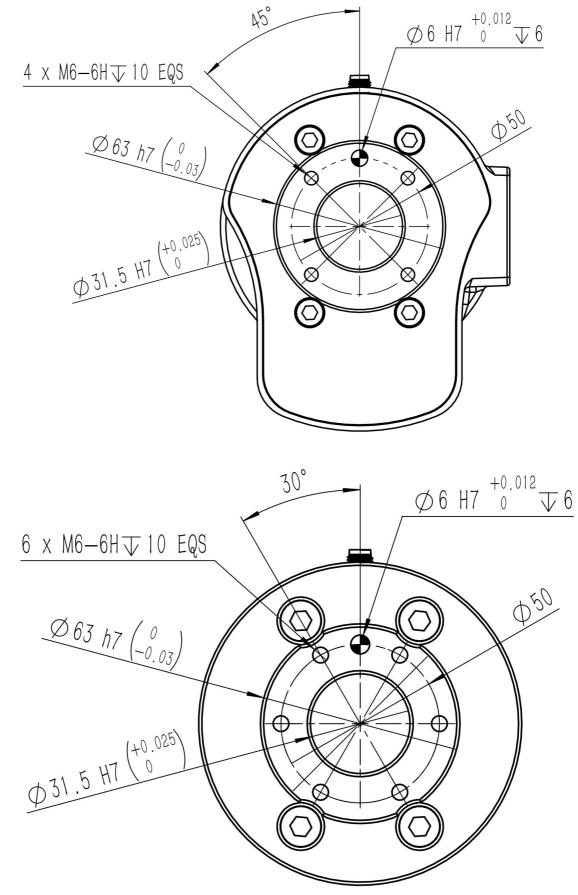


Figure 4-13 Mechanical Installation Interface of S20-180 Pro and Eco Flange

4.5 Installation interface

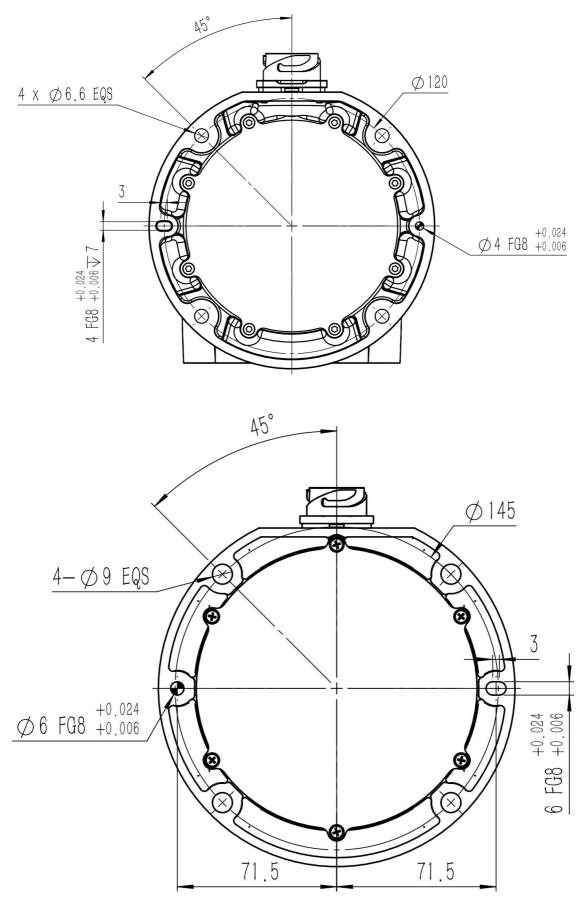


Figure 4-14 Mechanical Installation Interfaces of the Base for S3-60 and S5-90

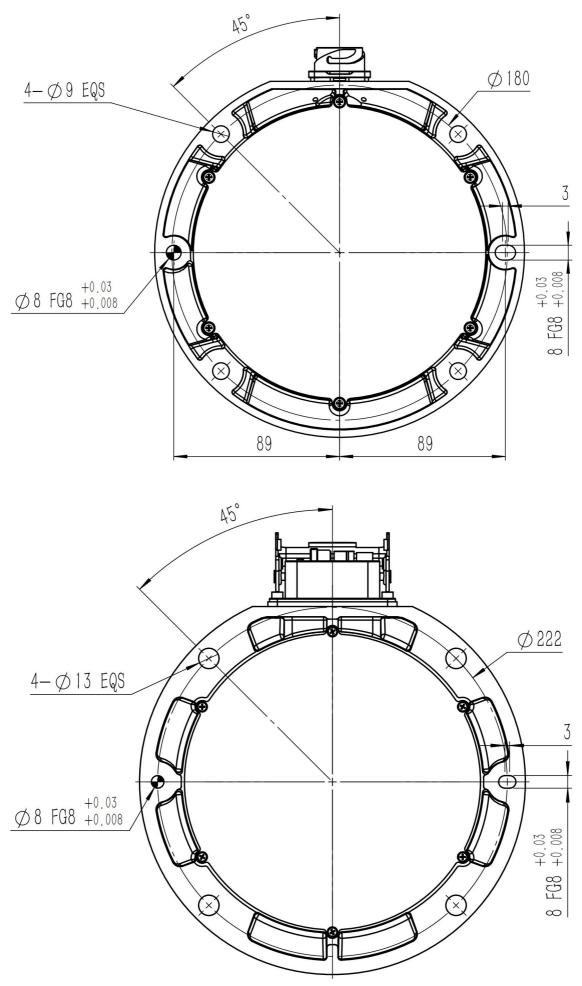


Figure 4-15 Mechanical Installation Interfaces of the Base for S10-140 and S20-180

4.6 Robot Specification

Model	S3-60	S5-90	S10-140	S20-180
DOF	6	I	l	
Payload (kg)	3	5	10	20
Reach (mm)	575	919	1400	1777
Repeatability (mm)	±0.03	±0.03	±0.05	±0.1
Weight (kg)	18	22	38	59
Certification	EN ISO 13849-1 PLd Cat.3 & EN ISO 10218-1			
Working range	Axis 1/2/4/5/6: ±360° Axis 3: ±160°			
Max. Speed of axis	[3、5、10kg] Axis 1/2/3: 150 °/s Axis 4/5/6: 180 °/s			
	【20kg】 Axis 1/2: 110 °/s Axis 3: 150 °/s Axis 4/5/6: 180 °			
	/s			
Max. Speed at Tool	2	2.5	2.5	3.2
End (m/s)				
Flange	2DI, 2DO, 24V	DC, MODBUS F	RTU, RS485	
Communication				
Mounting	Any orientation			
Operating Temp.	0 – 40 °C			
Operating Humidity	70% RH			
Operating Noise	≤65dB			

4.7 Control cabinet

Figure 4-16 Cabinet interface

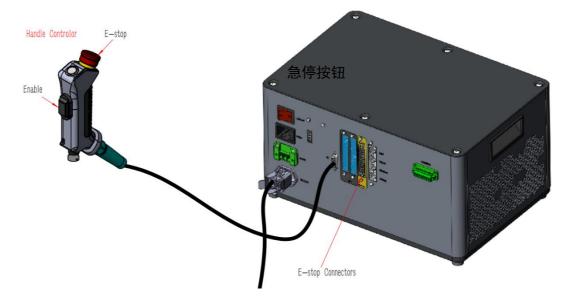
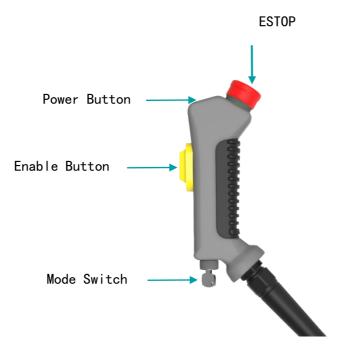



Figure 4-17 Emergency stop and switch position diagrams and safety IO interface position diagrams

Safety device	1 hand-held enable channel, 1 hand-held E-stop channel	
IP classification	IP20	
I/O ports	16DI, 8DO, 4AI/4AO, 7 stop inputs	
I/O power supply	24VDC, 2A	
Operating temp.	0~40°C	
Operating humidity	10~90%RH, Non-condensing	
Noise	≤65dB	
Altitude	Below 1000m	
Power	AC100- 240V, 50/60Hz	
Dimensions	380mm x260mm x 200mm	
Weight	14kg(Cabinet of 20kg robot),11.8kg(Cabinets of 10kg and below)	

4.8 Handle operator

The hand controller contains four switches or buttons, namely the emergency stop button, the power on/off button, the enable switch, and the mode switch. Their positions are shown in Figure 4-18 Hand Controller Interface.

When the robot is off, you can press the power button to turn it on; when it is on, hold down the power button for a long time to turn it off.

In case of an emergency, press the emergency stop switch on the hand controller. The robot will be disabled, stop all movements and lock.

When the emergency stop button is pressed, it will be locked. To unlock it, rotate the button as indicated on it. Only after unlocking can the alarm be cleared through the control software, and then the enable switch can be turned on to restore from the emergency state.

The enable switch is a three-position switch. In manual mode: the robot can move only when the enable switch is in the middle position; when the enable switch is fully released or fully pressed, a Type 2 stop will be triggered.

	warn	
	Do not install an enable switch, which, ifno couldresult in death or serious injuryor dar device.	
\wedge	Do not disable the enable switch in any wa not avoided,could result in death or seriou damage to the device.	
	Do not change or modify the enable switch not avoided,could result in death or seriou damage to the device.	
4.	The enable switch takes effect onlyin manu andcannot trigger any stop function in aut mode.	

Chapter 5 Electrical Hardware and Installation

5.1 End Interface

The base of the robotic arm is equipped with a heavy-duty interface, the end of the robotic arm is fitted with buttons and indicator lights, and the side of the tool flange is provided with buttons, a screen and an aviation plug. As shown in Figure 5-1, an overview of the end interface.

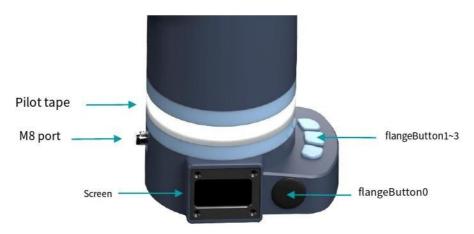


Figure 5-1 Overview of the Terminal Interface

5.1.1 Pro terminal interface

Interface	Description
M8	Power supply, input, output and communication IOs
Flange Button	User function customization buttons, free drag by default
Flange	User function customization buttons to set up functions in the setup
Button1~3	screen
Screen	Displays robot status, bus communication, inputs and outputs, RS485
	baud rate, user-defined button status, etc.
Indicator light	Robot status indicator strip

5.1.2 Meaning of the indicator light strip

Color	Information
Blue stays on	Initialization in progress
White	Turned on but not powered up
Green	Manual mode
Yellow flashing	Auto-run mode
Red flashing	Robot error

5.1.3 M8 Interface

The M8 flange interface of the robot is located at the rear side of the end flange. The pin distribution and definitions are as follows.

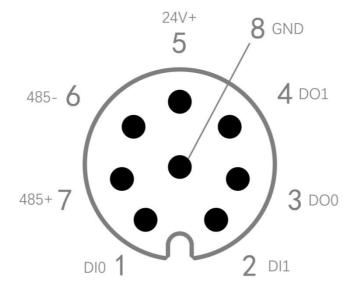


Figure 5-2 Pin Distribution of M8 Interface at the Flange End

Pin No.	Name	Definition
1	DIO	Digital input 0 (flangeDI 0)
2	DI1	Digital input 1 (flangeDI 1)
3	DO0	Digital output 0 (flangeDO 0)
4	DO1	Digital output 1 (flangeDO 1)
5	24V+	Positive 24V supply to external
6	485-	485 communication - (A) of MODBUS
7	485+	485 communication + (B) of MODBUS
8	GND	Flange internal ground; 24V power supply output
		negative terminal

The cable model for the M8 interface is Lumberg KKMV 8-354 or Lutronic FP-222460. It provides an external 24V power supply with a maximum current of 2A.

The digital output is of PNP type, capable of providing a maximum current of 5mA, and only offers level signals, which cannot be used to drive devices.

The digital input is configured as PNP type. When a switch is used as the DI input source, the wiring method is as follows.

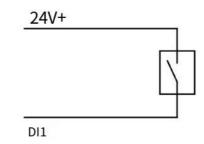


Figure 5-3 Wiring of PNP Type DI Switch at Flange End

5.2 Screen information

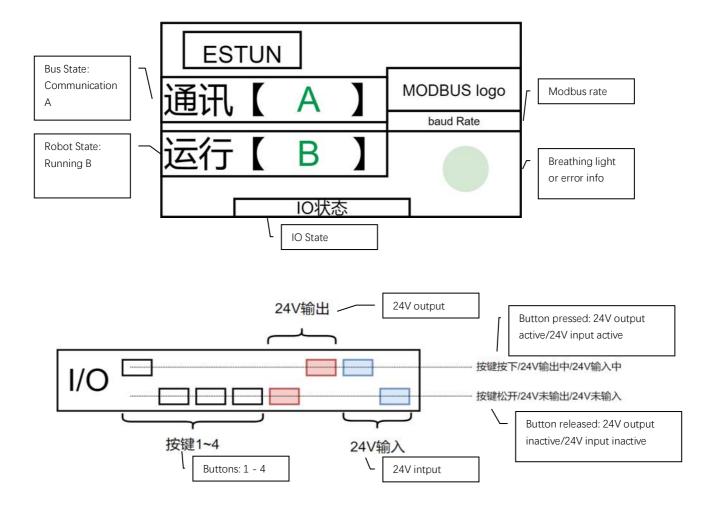


Figure 5-4 Screen Information at the End of the Flange

Info	Instruction
Bus state	"Offline" (red): indicates that the EtherCAT communication state machine is in INIT, which usually occurs at startup or when the communication cable from the controller to the flange is disconnected somewhere.
	"Mailbox" (yellow): indicates that the EtherCAT communication state machine is in PreOP or BOOT, which occurs when the flange firmware has been updated or when the PDO has not been established.
	"Live" (green): the EtherCAT communication state machine is in SafeOP, OP, which means that the communication cable is connected properly and the communication with the controller is normal.
	"Error" (red): indicates that the EtherCAT communication state machine has unexpectedly switched from OP to INIT, which usually occurs when the cable is disconnected during communication, when the controller is suddenly powered down or during a soft reboot.
Robot state	"Normal" (green): the robot has no errors. "Error" (red): the robot is running with errors.
IO state	A high cursor means the corresponding item is active; a low cursor means the corresponding item is not active.

MODBUS rate	MODBUS baud rates include 115200, 57600, 28400, 19200, 9600, 4800, 2400, 1200, 600, which can be configured through parameters.
Breathing light or error info	Slow green blinking (2s): communication not fully established (INIT, BOOT, PreOP) Green fast blinking (0.5s): real-time communication is connected (SafeOP, OP) Red flashing (2s): communication abnormally disconnected OP->INIT Error message: the robot reports an error and displays an error alarm

5.3 Control cabinet interface

There is only one power button on the front of the control cabinet. Press and hold it for a long time when the system is off to start the robot system, and press and hold it for a long time when the system is on to shut down the robot system.

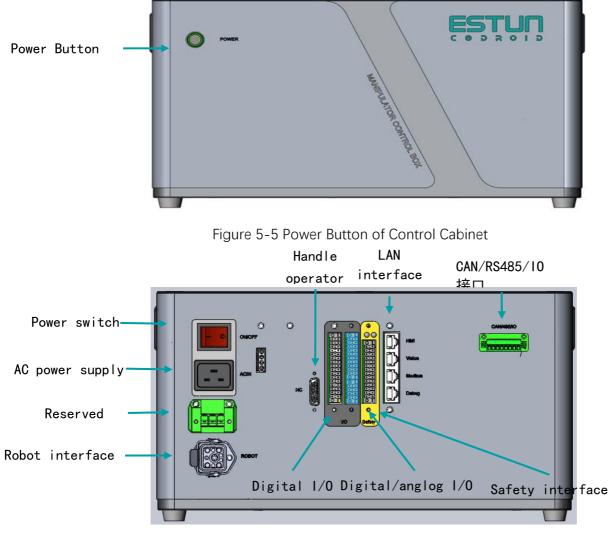


Figure 5-6 Overview of the Control Cabinet Interface

5.3.1 Overview of Electrical Interfaces

Interface	Instruction
AC power supply	For connection to AC100-240V 50/60Hz AC mains power supply
Power switch	Power supply switch
Handle operator	Handle operator
Robot aviation	Used to connect the robot to the control cabinet to provide
connector	power and communication to the robot.
LAN	For connection to teach pendant, vision, buses and
	development debugging
CAN/485/IO	CAN/RS485/IO
Safety port	Related ports for safety function
Analog/Digital I/O	Analog/Digital I/O
Digital I/O	Digital I/O

5.3.2 Safety Interface

The safety interface consists of 7 groups of safety dual-channel interfaces. The first to third groups are protective stop interfaces, and the fourth to seventh groups are emergency stop interfaces. The internal safety relays of the protective stop interfaces and the emergency stop interfaces are two independent channels. By default, the connectors are short-circuited horizontally with yellow short wires at the factory. Otherwise, the emergency stop state cannot be released.

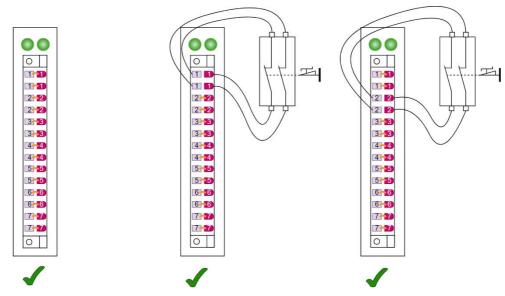


Figure 5-7-1 Correct Wiring Example for Safety Protective Stop

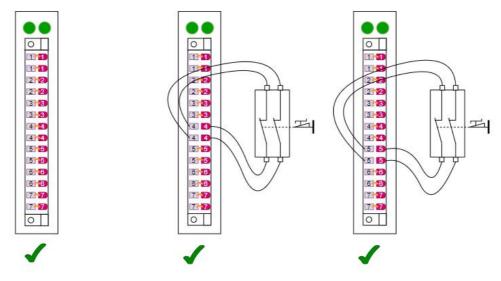


Figure 5-7-2 Correct Wiring Example for Safety Emergency Stop

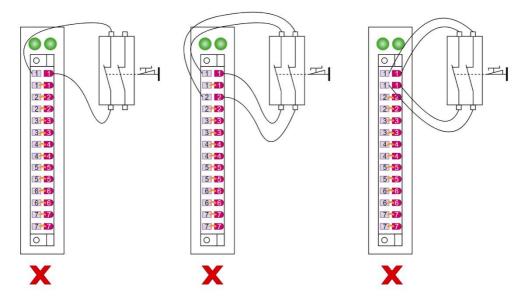
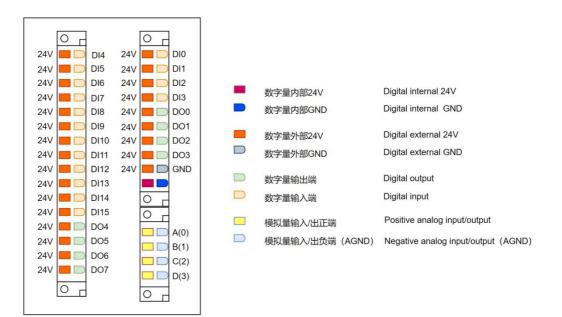



Figure 5-8 Typical Incorrect Wiring Examples of Safety Protective Stop and Safety Emergency Stop

5.3.3 General Input and Output Overview

5.3.4 External power connection method for digital input

When entering digital signals, power supply to the port is required. Use an external power supply and connect the input end with a relay or a PNP-type digital loop. The wiring method is as follows for reference.

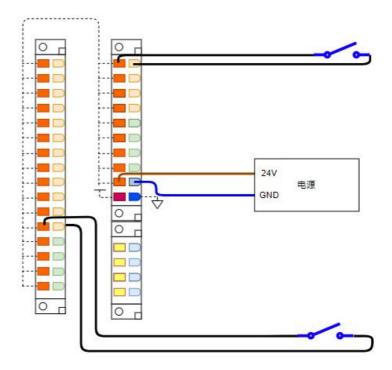


Figure 5-10 Example of Wiring for Relay Digital Input

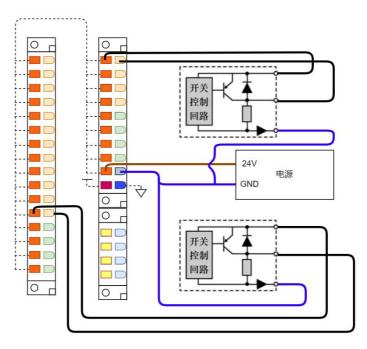
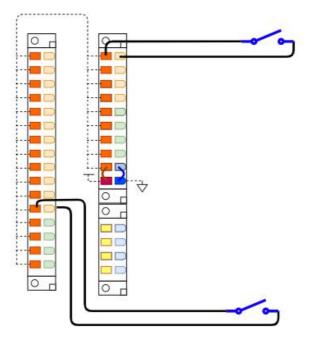



Figure 5-11 Example of Wiring for PNP-Type Digital Input

5.3.5 Internal power connection method for digital input

When the digital input port is powered, the internal power supply of the base plate can be used to power the port. The input end can be connected using a relay or a PNP-type digital loop. The wiring method is as follows:

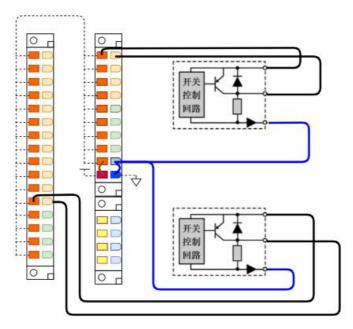


Figure 5-13 Typical Wiring Diagram for External Power Supply Provision

External power supply for digital inputs	Parameter
External supply voltage	Typical 24V
Maximum Output Current	Maximum output 5A per group

5.3.6 External power connection method for digital output

The digital output to the device terminal is powered by an external power supply. The output terminal is connected using a relay or PNP type circuit. The wiring method is as follows:

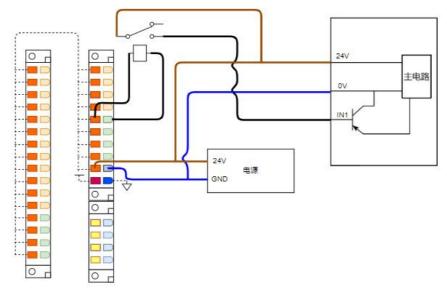


Figure 5-14 Example of Wiring for Digital Output Using a Relay

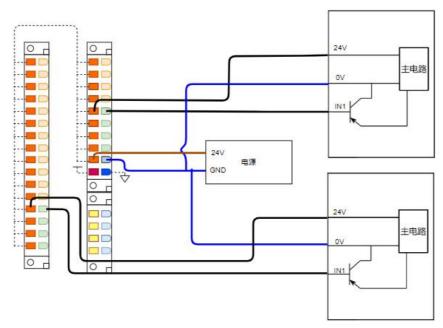
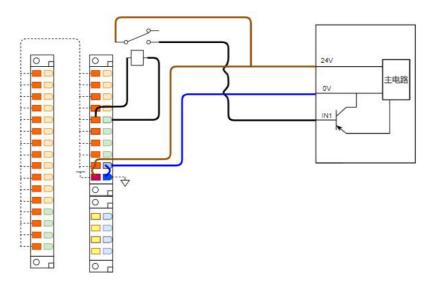



Figure 5-15 Example of Wiring for Digital Output Using PNP Circuit Type

5.3.7 Internal power connection method for digital output

The digital output to the device terminal is powered by an external power supply. The output terminal is connected using a relay or PNP type circuit. The wiring method is as follows:

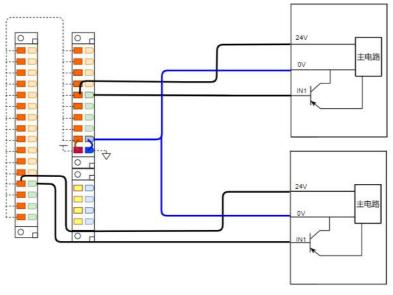


Figure 5-16 Example of Wiring for Digital Output Using Relays

Figure 5-17 Example of Wiring for Digital Output Using PNP Circuit Type

digital output	Parameter
Interface type	PNP
Output voltage	Typical 24V; Maximum 30V
Max output current	125mA max. for single group

5.3.8 Simulation input/output interface

The analog input supports both voltage-type and current-type sensors. The input type of voltage or current needs to be set in the robot settings options; the analog output only supports current type.

Warn

The analog output port must be connected to a load; otherwise, the robot will report an error. You can turn off the corresponding analog output port from the robot's operation interface.

The wiring for various situations is shown in the following figure:

Figure 5-18 Correct Wiring Example for Analog Voltage Input

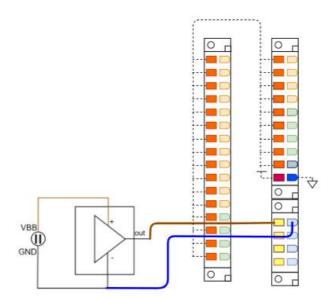


Figure 5-19 Correct Wiring Example for Analog Current Input Type

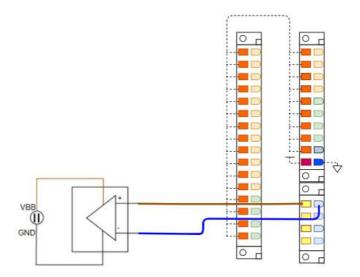


Figure 5-20 Correct Wiring Example for Analog Current Output

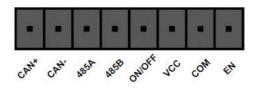
Analog Inputs	Parameter
Resolution	12bit
Measurement range	In voltage mode: 0-10V;
	In current mode: 4-20mA;

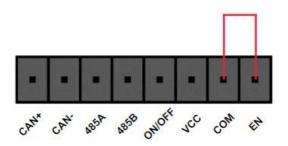
Input Impedance	In current mode: 20Ω;

Analog Outputs	Parameter
Resolution	12bit
Onput Impedance	Current mode: 4 - 20mA;

5.3.9 CAN/485/IO interface

The pin definitions of the interfaces including CAN, 485 and IO on the control cabinet are as follows:




Figure 5-21 Definition of CAN/485/IO Interface

Ports	Instruction
CAN+	CAN+
CAN-	CAN-
485A	485A/485+
485B	485B/485-
ON/OFF	External start/stop button
VCC	Start-stop signal transmission
СОМ	Start-stop signal receiving
EN	Internal start/stop button

Different wiring methods for power supply on and off:

Method 1: Use the power button on the control cabinet and hand controller to turn on and off the machine.

(Short-circuit the COM and EN interfaces with a jumper wire.)

Method ②: External power supply start/stop button

Short the COM and EN interfaces with a jumper wire, and connect the ON/OFF and VCC interfaces to an external self-resetting normally open stop button.

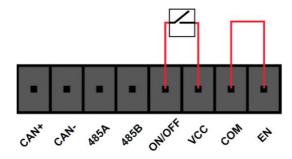


Figure 5-23 Wiring Diagram for Power Supply Startup Method 2

Method 3: Self-starting after the control cabinet is powered on

(Short-circuit the VCC and 24VEN interfaces with a jumper wire.)

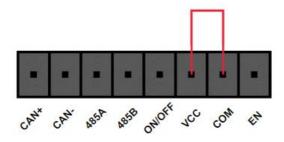


Figure 5-24 Wiring Diagram for Power Supply Startup Method ③

5.3.10 LAN Network Port

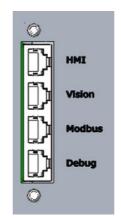


Figure 5-25 Network Interface

LAN ports	Instruction
HMI	Connect to a demonstrator or tablet. Direct connection to internal router, router connected to keba's ETH0 port.
Vision	Connecting Visuals. Directly connect to the internal router, which is connected to the keba's ETH0 port.
Modbus	Bus connection port. Directly connect to the internal router, which is connected to the keba's ETH0 port.

Debug	Debugging, socket port. Direct connection to internal keba controller
	ETH1 port.

5.3.11 Communication input

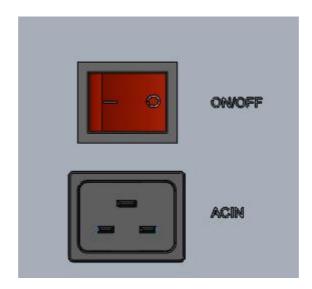


Figure 5-26 AC Input Interface and Switch

The AC input range is: AC100~240 V 50/60 Hz. AC power supply and DC power supply cannot be connected simultaneously. When in use, a magnetic ring needs to be placed on the ACIN power cord to eliminate EMC interference.

Chapter 6 Maintenance and Warranty

6.1 Notes

- Maintenance work can only be carried out by Codroid or authorized system integrators.
- Always perform any visual or workplace inspections for maintenance or repair in accordance with all safety instructions in this manual.
- The change control system and robot joints require recalibration of the robot. The calibration operation and result judgment method are described in the zero-point verification manual. Also, the parameter settings need to be checked. If there is a parameter backup, it can be imported. If not, the parameters need to be reset.

When operating the robot body or control cabinet, the following safety tasks must be followed:

- Remove the main input cable from the back of the control cabinet to ensure that the system is completely de-energized. Necessary precautions should be taken to prevent others from re-energizing the system during maintenance. After deenergizing, re-check the system to ensure it is de-energized.
- Please check the grounding connection before restarting the system.
- When disassembling the robot body or control cabinet, please comply with the ESD (Electrostatic Discharge) regulations.
- Avoid disassembling the power supply system of the control cabinet. Even after the control cabinet is turned off, its power supply system can still retain high voltage for several hours.
- Avoid water or dust from entering the robot body or control cabinet.

6.2 Daily inspection items

6.2.1 General cleaning

If dust/dirt/motor oil is observed on the controller or the robotic arm, it can be wiped clean with a cloth dampened with a cleaning agent. Cleaning agents: water, isopropyl alcohol, 10% ethanol or 10% naphtha.

In extremely rare cases, a small amount of grease can be seen at the joint. This does not affect the specified function or service life of the joint.

Do not use compressed air to clean the controller or the mechanical arm; otherwise, the seals and internal components may be damaged.

6.2.2 Control box

Inspection plan

Inspection item	Method	Monthly	Semi- annual	Annual
Emergency stop button for handle operator	Functional test	Х		
Free Drive Mode	Functional test		X	
Safety inputs and outputs	Functional test	Х		
Teach pendant cables and adapters	Visual inspection		X	
Terminals on the control box	Functional test		X	
Control cabinet main power and switches	Functional test			Х

Highlight the safety features of the robot and recommend monthly testing to ensure proper functioning.

The following tests must be carried out:

6.2.2.1 Test the emergency stop button on the handle operator

- Press the emergency stop button.
- Observe the robot stop and then turn off the power supply of the joints.
- Restart the robot again.

6.2.2.2 Test free drag mode

- · According to the tool specifications, remove the accessory devices or set the TCP/load.
- Hold down the free drag button at the end of the robot to set the robot to free drag mode.
- Move the robot to a position where it is horizontally extended to the edge of its workspace.
- While holding down the free drag button, monitor the robot to maintain its position without support.

6.2.2.3 Test safe input and output

• Check which safety inputs and safety outputs are active and test whether they can be triggered.

6.2.2.4 Visual inspection

- Unplug the power cord from the controller.
- Check if the terminals are correctly inserted and if the wires are loose.

- Check if the network cable inside the controller is loose.
- Check if there is any dirt/dust inside the controller. If necessary, clean it with a vacuum cleaner that prevents static discharge.

6.2.3 Robot

Inspection plan

Inspection item	Method	Monthly	Semi- annual	Annual
Check the joint cover	Visual		X	
	inspection			
Check cover screws	Functional test		X	
Inspection of flat rings	Visual		X	
	inspection			
Check robot cables and connections	Visual		X	
	inspection			
Checking the robotic arm mounting	Functional test	Х		
bolts				
Check tool mounting bolts	Functional test	Х		
Check the screws connecting the joints	Functional test		Х	

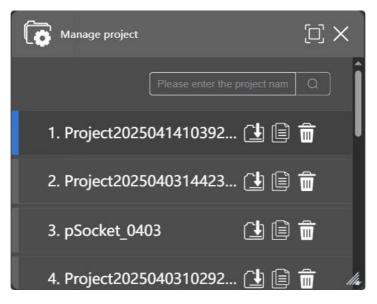
The purpose of the functional inspection is to ensure that the screws, bolts, tools and mechanical arms are not loose. The screws/bolts mentioned in the inspection plan should be checked with a torque wrench.

6.3 System update

This chapter explains how to update the CoDroid robot software. The information in this manual is accurate at the time of writing. Users will not be notified in advance of updates for subsequent products.

Before starting the update, please confirm the following update precautions.

Please ensure that the power supply will not be turned off or cut during the update.


Confirm that the correct version of the update compressed file has been obtained.

All the programs of the robot have been backed up.

Before updating, please check the release notes of the version you are updating to. For detailed information, contact CoDroid technicians.

6.3.1 Update steps

After starting up, enter the robot control platform, go to the project tab, click on the project management interface, and select the program to be backed up for downloading to perform the program backup.

2. Switch the robot to the "power-off" state and press the emergency stop button.

3. Click on the system version number at the lower right corner of the page to enter the update interface.

SETTING SETTING Comparison Compa	DEPLOY SYS	IEW	
Mostly Depty Continu Depty /opt/kecontrolapplication/application/control/ccontrol [Info] %JF3PJLR%: sudo q- r / ctrt/lib /opt/kecontrolapplication/application/control && sudo mv [/opt/kecontrolapplication/application/control/control /info] %JF3PJLR%: sudo q- r / use/ busy/locat/lib/web && sudo mv [/use/locat/lib/web/web/use/locat/lib/web/run [Info] %JF3PJL% [/use/locat/lib/web/web/run [/use/locat/lib/web/web/run	Drop file here or click to upload		SETTING
LOG: //opt/kecontrolapplication/application/control/ccontrol [Info] 8;JT39JM2*:sudo q-r / /ttrl/lib //opt/kecontrolapplication/application/control/ccontrol [Info] 8;JT39JM2*:sudo q-r / /ttrl/kecontrg-cloos //opt/kecontrolapplication/application/control && sudo mv //opt/kecontrolapplication/application/control/ckeconfig-cloos //opt/kecontrolapplication/application/control/ckeconfig- Info] 8;JT39JM2*:sudo q-r /us/bos/JNJM2/beb && sudo mv /usr/loca/IIb/web/web /usr/loca/IIb/web/mu			
	[Info] 我行賽見招令: sudo cp /_ctrt/lib /opt/kecontrolapplication/20plication/2	Ĵ	

4. Drag the update file into the file selection box, or click the 'click to upload' button to select the file you need to update and wait for the upload to complete.

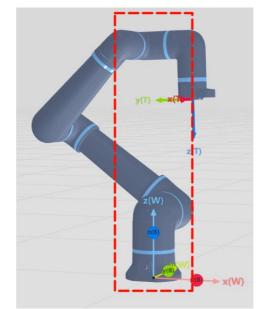
5. Select the appropriate options based on the model requirements.

		SETTING
6	deployOption	史秋前后转
Upload [RR/FE/v] #ST(#FR,RI/JR/JP/%).zip] Success, Please confirm the deployment.	softwareVersion	通用故
	robotVersion	5kgBil#4T
.2/p files with a size less than 20 C8	robotDragVersion	5kg][]]
Confirm Deploy	oldVersion	1.3.x
OG:	controlPeriod	1000us
/opt/kecontrolapplication/application/control/ccontrol [Info]执行提升管: sudo cp - r /ctrl/lib	simulation	
/opt/kecontrolapplication/application/control/ccontrol [Info] 执行接页指令: sudo cp - r _/cttr/keconfig-cloos /opt/kecontrolapplication/application/control && sudo mv	nologo	
/ GpU Aecontrolappin.elian() appin.elian() control Aecosado Intro / GpU Aecontrolappin.elian() appin.elian() control Aecosado Intro / GpU Aecontrolappin.elian() appin.elian() control / Aecontifi-cionos (Info) 武行戦団管: sudo cp - f. Aveb. / AssTrocal/Ibi/veb Be& sudo mv / usr/local/Ibi/veb/web/ / Info) 気気能型影響指音() appin.elian() appin.elian() appin.elian() Info) 気気能型影響指音() appin.elian() appin.elian() appin.elian() Info) 気気能型影響指音() appin.elian() appin.elian() appin.elian() Info) 気気能型影響指音() appin.elian() appin.elian() appin.elian() Info) 気気能型影響指音() appin.elian() appin.elian() appin.elian() appin.elian() appin.elian() Info) 気気能型影響指音() appin.elian()	backup	
· · · · · · · · · · · · · · · · · · ·		

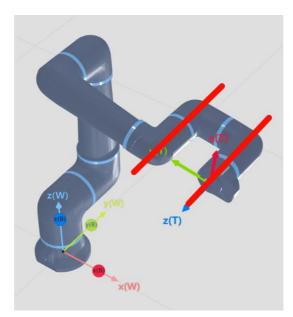
6. After confirming the update, wait for the robot software to restart automatically. The update is complete once the restart is finished.

▲ 不安全 192.168.101.100:8080	A	î	£≡	G
DEPLOY SYS	STEM			
A				
Upload [update-V1.0.zip] Success deployment.	, Please confirm th			
	@ Q			
.zip files with a size less than 20 GB	Confirm Deploy			

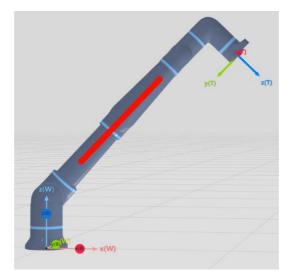
6.4 Common Mistakes


This section lists some common errors that may occur during the use of the robot. If you encounter other errors that cannot be resolved, you can download the robot log file in the log interface and send it to the after-sales personnel for analysis and processing.

6.4.1 Singularity/Inverse solution failure


The working range of a robot is a spherical space with the arm's reach as the radius. However, there are some special positions and postures that are singular points for the robot, and these should be avoided during operation.

The following are three typical types of singularities:


A cylindrical area with the base of the robot's pedestal as the bottom surface;

When the a3, a4, and a6 joints of the robot are parallel;

When the angle between the robot's upper arm and lower arm approaches 180°,

6.4.2 Trigger collision detection

The torque sensors in the robot joints will detect the force exerted on the robot in real time. When the force exceeds the expected value, a collision detection will be triggered. At this point, it is necessary to confirm whether the robot's movement trajectory is correct

and whether there is anything obstructing the robot's movement.

If the robot's motion trajectory is correct but the collision detection is still triggered, it is necessary to check whether the tool is set correctly, whether the load is set correctly, and whether the pipeline of the end tool is normal, etc.

6.4.3 Location/Speed Exceedance

When the robot exceeds the position or speed limit during operation, check whether the program is correctly written. If it is correct, you can modify the corresponding parameter limit in the safety settings of the settings.

If a position limit error occurs and the robot remains in an over-limit state even after the error is cleared, and it still alarms upon re-powering, the rescue mode can be enabled to adjust the robot to an appropriate posture.


6.4.4 Joint tracking error is too large

When excessive joint tracking errors occur during the robot's movement, it is necessary to check whether the movement speed and acceleration are reasonable, and whether the robot's load is correct and within the robot's load capacity.

6.4.5 Alarm cleared

When an alarm pop-up window appears, you can directly activate the rescue mode or click "OK" and then manually reset it to enter the rescue mode. The steps to clear the alarm in the rescue mode are as follows:

d) In rescue mode, rotate the overrun joints to the correct position by tapping the

joints;

- e) Click Power Off to shut down the robot. 6;
- f) Tap rescue mode;
- g) Repeat step 3 to power up the robot.

6.5 Fault code description

Currently, there are a total of 6 information levels for the robot. The fourth digit of the error code indicates the error level.

No.	Error & Level
0	System occupancy
1	System prompt
2	Alert
3	General Error
4	Critical error
5	Fatal error

- When general errors or more serious issues occur, the robot will power off and stop operating.
- When a warning-level error occurs, the robot will slow down and stop.
- If multiple errors occur at the same time, the one with the highest severity level will be executed.
- There will only be one error code for the same type of error, but the content of the error will be specifically displayed on the demonstrator
- For specific error codes and details, please refer to the appendix.

6.6 Disclaimer

Estun Codroid is committed to creating a harmonious future where humans and machines coexist. While continuously enhancing the reliability and performance of our products, we reserve the right to upgrade them without prior notice. Estun Codroid strives to ensure the accuracy and reliability of the information in this manual, but assumes no responsibility for any errors or omissions.

The following situations resulting in malfunctions are not covered by this warranty:

- Installation, wiring, and connection to other control devices were not carried out in accordance with the requirements of the user manual;
- Use beyond the specifications or standards indicated in the user manual;
- Product damage caused by improper transportation or use;
- · Damage caused by accidents or collisions;
- Natural disasters such as fire, earthquake, tsunami, lightning strike, strong wind and

flood;

- Modifications to system software or internal data;
- Use of this product in radioactive equipment, biological testing equipment or for hazardous purposes;
- The production date or the start date of the warranty cannot be identified.
- Faults not caused by Nanjing Estun Codroid Co., Ltd. other than the above situations.

6.7 Abandoned robots

Abandoned robots must comply with national and local laws and relevant regulations.

Chapter 7 Overview of the Teaching Pendant

Interface

7.1 Login interface

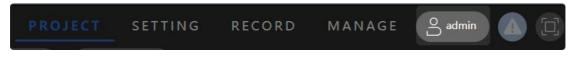
The default startup account is admin, the password is 123456, and the mode is custom. If the IP address of the connected controller has been modified, you can click the red button to set the required IP address and port and save it.

Clicking the "Clear Cache" button can clear the browser cache. It is recommended to clear the cache when switching the connected robot.

Figure 7-1 Login Interface

7.2 Home page

Figure 7-2 Main Interface


After successfully logging in, you will be redirected to the main interface, which displays the contents of "Project" tab by default and is divided into 4 operable areas:

7.2.1 Switch tab area

It includes four buttons: "Engineering", "Settings", "Logs", and "Management", which respectively switch to four different display interfaces.

7.2.2 Account Settings Button

The button displays the currently logged-in account. Clicking it leads to a "Re-login" option that redirects to the password interface.

7.2.3 Error message and real-time log window button

PROJECT SETTING	RECORD	MANAGE	o admin		
-----------------	--------	--------	---------	--	--

Pop up the error message and real-time log window.

Error code	Info
0x10100515	Joint velocity command jumped or local acceleration too large
Confirm	Activate rescue mode

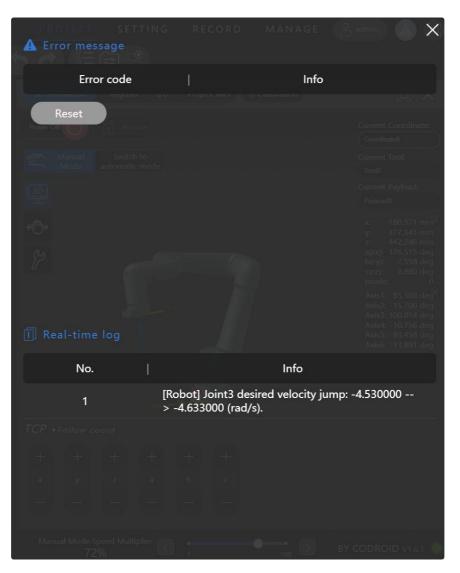
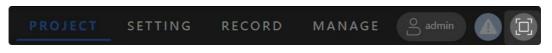
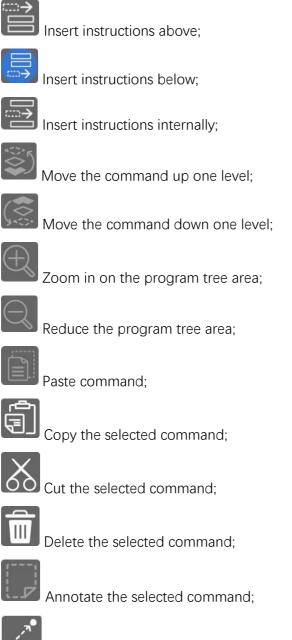



Figure 7-3 Error Messages and Real-time Logs

When the robot reports an error, an error message is displayed here, containing the time of the error, the error code, and a description of the error message. After confirming that the robot's fault status is clear, you can press the "Reset" button to clear the error message, and the robot can be powered up again after the error status is cleared.

7.2.4 Full-screen display button

Used to switch between full-screen and non-full-screen mode of the web page (fullscreen display is recommended).


7.3 Project Tab

In the Project tab, the main areas include the menu area, graphic programming area, pose list, variable list, parameter area, 3D display area, IO area, project management area, and speed multiplier adjustment area.

Figure 7-4 Layout of the Project Interface

7.3.1 Quick operation area

loint movement to the point

Update Points;

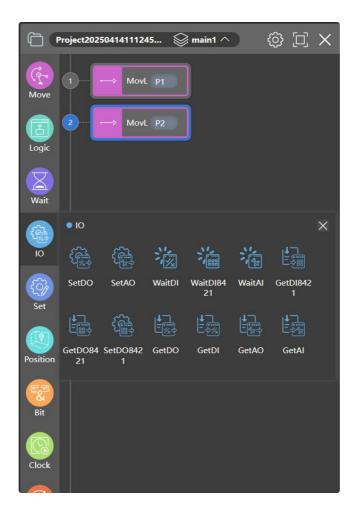
Project Settings

Undo the current operation

~	

Redo the current operation

Open the batch management operation; after opening it, you can manage the project, program tree and point list in batch. You can select a command individually or select all or reverse selection, and then you can do copy, paste, delete and other operations on



Open the Variable Management screen;

Track record

7.3.2 Graphics Programming Area

The graphic programming area can be divided into four parts, namely: the title area, the instruction classification area for programming, the instruction area for programming, and the program tree area.

7.3.2.1 Title Area

There are three buttons in the title area, namely:

~~
203
25

Project property editing and task management:

ProjectDe	mo		[D]	×
Name	: [ProjectDemo		
List				
Serial	Name		Mar	nage
Number				
1	main1]Main P	Program
2				///

- Full screen / Restore window, Close window ٠
- Name the current project.
- Switch between multiple programs / (a single) program
- Program management in multiple programs (subroutine naming, adding new subroutines, deleting subroutines), with a maximum support of 30 multiple programs in one project.

Full Screen/Restore Window: Full screen/restore the "Graphics Programming Area" display.

Close the Graphics Programming Area window.

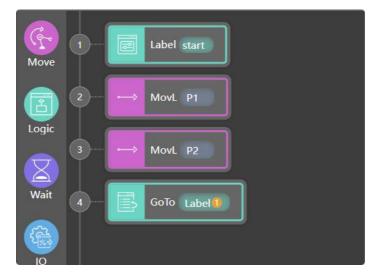
After closing the "Graphic Programming Area", you can click on the "Visual Programming" button A to restore the display.

7.3.2.2 Multitasking

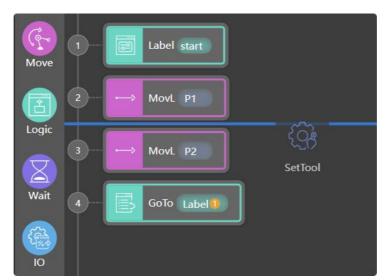
The robot supports multi-tasking programs. Different types of tasks can be added by

clicking on the button, namely subtasks, interrupt tasks, programs with motion instructions and programs without motion instructions. Selecting a task or program switches the currently programmed program tree.

Interrupt tasks, programs containing motion instructions, and programs without motion instructions. Selecting a certain task or program can switch the current programming program tree.


- A project only contains one main task, but can include multiple sub-tasks and multiple interrupt tasks. When the project runs, it starts from the main task.
- Sub tasks must be initiated and run within the main task through the RUN command and do not run automatically. Sub-tasks are not allowed to contain motion instructions. The main task can stop sub-tasks through the KILL command (subtasks are allowed to RUN and KILL other sub-tasks), but the main task cannot be KILLED.
- Macro tasks must be bound in the main task through interrupt-related instructions.
 When the interrupt condition is triggered, the main task enters a suspended state and then switches to the execution of the bound interrupt task. After the interrupt task finishes running, the main task resumes operation.
- The macro task cannot contain motion instructions and cannot run other tasks. Before the interrupt task exits, the robot must be moved to the position where the interrupt was triggered. Otherwise, after the interrupt task exits, the main task will remain paused. It is necessary to manually move the robot to the position where the interrupt was triggered and then click to resume operation.
- When multiple macro conditions are triggered simultaneously, the macro task that was bound first will be executed. After its completion, the triggering conditions will be re-evaluated. This logic will be repeated (i.e., only one interrupt task can run at a time and will not be interrupted by other interrupt tasks).
- A task cannot be run simultaneously by multiple other tasks.
- Programs can only be called by tasks through the Call instruction. Programs are distinguished based on whether they contain motion instructions.
- Both the main task and interrupt tasks can call all programs.
- Sub tasks can only call programs that do not contain motion instructions.
- A program can be called by multiple tasks simultaneously.

7.3.2.3 Programming instructions



Programming instructions refer to graphical programming instructions. After selecting a category, click on the required graphical programming instruction to add it to the program tree on the right, or you can directly drag the instruction to the program tree on the right.

7.3.2.4 Program Tree

In the program tree, you can add, delete, comment, copy, and sort program nodes, and you can also edit the parameters of the added program nodes.

Add instructions

After selecting a category, click on the desired graphical programming instruction to add it to the program tree on the right. You can also directly drag and drop the instruction into the program tree on the right. Depending on the way the instruction is

inserted in the quick operation area, it can be added above, below, or as a sub-level of the currently selected instruction in the program tree.

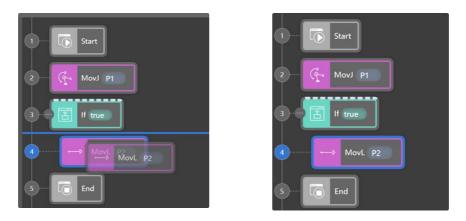
Delete/Comment Instruction

1 Image: Start 2 Image: MovJ PI 3 Image: MovL P2 4 Image: Start 6 Image: Start 7 Image: Start 8 Image: Start 9 Image: Start 10 Image: Start	ProjectDemo 🤤 main 1 🥎	1 (pose	ji ×
2 Weil MovJ P1 3 → MovL P2 4 → For End B 标位置: P1 APOS ② × goal 课 : V100 → + add 建 : Acc130	()- Too Start			2, Mav J
I I I I I I I I I I I I I I I I I I I	2 MovJP1			
goal 2€ : V100 - + add 1€ : Acc130 - +	3 - MovL P2			P1
add 💷 : 🗛	End			APOS 🔊 🗙
			goal 🚁 :	v100 - (+)
Tool parameter : DEFAULT - +			add 💷 💠 :	ACC100 · (+)
			Tool parameter	
sit mark : DEFAULT ·)			sit mark :	
Job load EFAULT - +			Job load	

Double-click the program node to be deleted, or select the parameter list, the

corresponding node edit window, and click the Delete 🛄 button.

Click the program node that needs to be commented, the corresponding node editing


window pops up, click the Comment *button*, the commented instruction will be kept in the program but the instruction will not be executed at runtime.

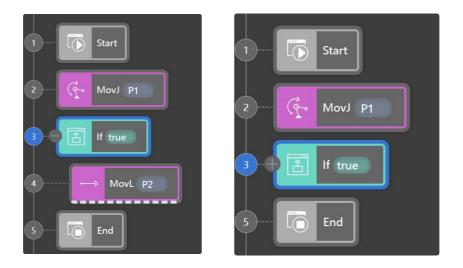
Copy instruction

Project20250414103926 😂 main1 ^	@ [] X	POINTS	X
1 Label start		5. SetTool	
2 ···· → MovL P1		Copy	Delete
3 → MovL P2			
4 GoTo Label			
5 - {\$\$ SetTool		Desc : input string	

Click the program node to be copied, the corresponding node editing window will pop up, click the Copy button. The new node will be automatically pasted in the next

Sorting instructions

Select and drag the program node whose sequence needs to be changed and place it at the desired position. Depending on where it is released, instructions can be added above, below, or at a sub-level of a certain instruction.

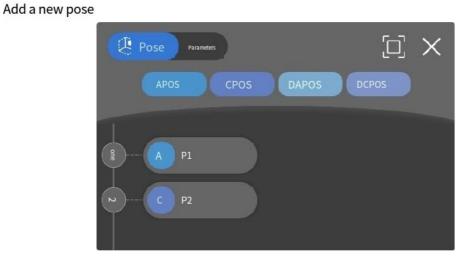

1 Label start	АРО	DS CPOS DAPOS E	OCPOS
2 MovL P1	1 C 2 C		
3 ···· → MovL P2			
4 GoTo Label	⊷> MovL	[
5	Сору	Comments	
	Target Location : P1	POS CPOS	× X
	Speed : V10	00 ~	\oplus
	Acceleration : ACC	C100 ~	\oplus
	Transition Type : FIN	IE	
	Attr Settings		<i>√ 11</i> æ

Editing instructions

Double-click the instruction that needs to be edited or select the instruction and then click the parameter list to edit the detailed parameters of the instruction.

Pose List Area

Folding instructions


Some commands can be collapsed; clicking on the end in front of a command collapses the command's secondary, and vice versa expands it.

Instruction Notes

1 Label start	5. SetTool
2 → MovL P1	Copy Comments Delete
3 → MovL P2	
4 GoTo Label	
5 SetTool remark	Desc : remark

Notes can be added to commands, and the notes will be displayed on the right side of the commands.

7.3.3 Pose Zone

In the pose tag button, you can double-click to add a new pose. Selecting different pose types will add the selected pose. There are four types of poses:

- CPOS: Cartesian position
- APOS: axis position (Joint position)

- · DCPOS: delta cartesian position (increment of the Cartesian pose);
- DAPOS: delta axis position (Increment of joint position);

When CPOS and APOS are added, they represent the Cartesian pose and joint position of the current robot respectively. When DCPOS and DAPOS are added, all their values are 0.

For detailed information on various points, please refer to the Variables section.

Edit pose

₽2		j x
or Move	80 Move Updates Copy	Delete
Name	: P2	
CPOS		~
x	: -180.9582116749238	mm
у	: 391.9047771604961	mm
z	: 350.299508823477	mm
a(rx)	: 176.57062312768758	deg
b(ry)	: 7.559105296199172	deg //

Click to open the pose editor window. In this window, you can operate on the points.

- Move in a straight line to the point.
- The joint moves to the point.
- Update
- Сору
- Delete
- Edit the name of the location.
- Edit the position values of CPOS, APOS, DCPOS, and DAPOS.
- POSCFG configuration

Move to pose

In non-automatic mode, the "Move to" function has two buttons:

Move to the current position in the MovL mode.

Move to the current position in the MovJ mode.

Updated pose

Update the current Cartesian position/joint position to the selected point position via the button.

Copy pose

By copying the selected points with the <u>use</u> button and pasting them afterwards, the point name will be the serial number of the last added point plus 1.

Delete pose

Delete the selected points with the

Edit pose name

Rename the point by using the "Name" text box.

Edit pose values

The text boxes under CPOS, APOS, DCPOS, and DAPOS can be edited. Entering a value will change the value or increment of the selected point's Cartesian pose/joint position.

POSCG configuration

At the same Cartesian space position, a robot can have multiple combinations of joint positions (corresponding to the multiple solutions of the robot's inverse kinematics). This attribute is used to define the morphological configuration data corresponding to the spatial target point.

When mode = -1, it indicates that the current configuration is to be maintained. The kinematics of the general six-joint robot has eight sets of solutions. The mode values are defined as 0 to 7, with the meanings as shown in the following table:

Mode	腕部中心相对于一轴轴心的关系(flag1) 0:在前;1:在后 $R + L_3 \cdot cos(\theta_2 + \theta_3) + L_2 \cdot sin \theta_2 + S \cdot sin(\theta_2 + \theta_3)$	Axis3(flag3) $(\theta_3 + 90 - arc \tan(S/L3))$ 0: [0,180] 1:(-180,0)	Axis5(flag5) (θ_5) 0: [0,180] 1:(-180,0)
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

7.3.4 Parameter Area

Project20250414103926 😂 main1 ^ 🎊 🔲 🗙	POINTS → ATTR
1 E Label start	2. MovL
2 MovL P1	Copy Comments Delete
3 → MovL P2	Target Location : P1
4 GoTo Label	APOS CPOS
5	Speed : V100 ~ +
	Acceleration : ACC100 ~ +
	Transition Type : FINE V
	Attr Settings 🗸 🗸
	Desc : input string

View, edit, and delete the details of the selected program tree instructions. The parameters of each instruction are slightly different. For specific details, please refer to Chapter 10.

7.3.5 3D Simulation

Display real-time robot simulation animations as well as the Cartesian coordinate system pose and joint positions.

Power on/off button, used to control the robot to switch

on or off power.

Rescue mode, in which the joints can be jogged without motion range restrictions (enter this mode when the robot is in the "power-off state").

"Teach mode", after enabling it, power on the robot to move the joints in point mode.

point to continue running Rescue Mode, to tap the joints without range of motion restrictions (enter Rescue Mode when the robot is "powered down", turn it on, and then power up the robot to tap the joints);

Current Coordinate:

Coordinate0 Current coordinate system. Switch the "user coordinate system" variable currently in use;

Current Tool: Tool0

Current tool. Switch the "Default Tool" variable in the Settings tab -

Basic;

Current load, switch the "Default Load" variable in the Settings tab -

Basic;

Manual/Auto mode switching;

<u>3</u>D

Simulation/live mode switching, switching between "simulation mode" and "live mode" of the robot in the power-down state, in the simulation mode, the live robot will not move;

Drag Sensitivity, which adjusts drag teach sensitivity and whether or not attitude lock is turned on;

Toolbox with tools for switching viewpoints, clearing motion trajectories, zero calibration, return to zero position, return to packed position, and more;

Stop Rendering Stop simulation rendering and stop rendering the 3D simulation model, which saves the oscillator hardware resources.

Switch viewpoints to quickly switch between the viewpoints of the 3D

simulation;

Clear Trajectory Line, clears the trajectory line of the end TCP in the 3D simulation space;

o Return to home

To return to the zero position, click and then long press the lower right button

back to the robot home point position;

Back to Safe Location To return to the safe point position, click and then long press the bottom right button to return to the robot's safe point position stance. This point position can be set in Setup Heavy Safety;

Candle Position The robot returns to the vertical attitude position;

Back to Packing Position To return to the packing position, click and long press the lower right button to return to the robot's crating stance;

Target position display, whether or not to display the robot's target position for the next command in automatic mode;

Joint TCP

Tap mode switching, switching between "joint jogging (articulation)"/"end jogging (Cartesian motion)", and different speeds can be adjusted by the speed multiplier.

move the robot along the current coordinate system or the tool coordinate system.

7.3.6 Register

🗸 🚍 Rol	botBase				
Address	Туре	Name	Value	Permis	Monitoring
0x0000	UInt8	majorVersion		го	Off
0x0001	UInt8	minorVersion		ro	Off
0x0002	UInt8	reserved		го	Off
0x0003	UInt8	reserved		го	Off
0x0004	UInt16	milliSeconds		го	Off
0x0005	UInt8	seconds		го	Off
0x0006	UInt8	minutes		го	Off
0x0007	UInt8	hours		го	Off
0x0008	UInt8	moveRate		го	Off
0x0009	Ulnt16	days		го	Off
0x000A	UInt8	reserved		ro	Off
0x000B	UInt8	reserved		го	Off
0x000C	UInt8	reserved		го	Off
		_	_		
6		Save Char	nge		

The register interface displays the status of all registers. There are communication registers inside the robot. For the addresses and meanings of these registers, please refer to the register table.

In the permissions, "ro" stands for read-only access to the outside, and "rw" stands for read and write access to the outside.

When monitoring is turned on on, the pendant refreshes the register values in real time. When debugging, you can communicate with the external device debugging by

modifying and issuing the value.

7.3.7 I/O

🔨 🕣 Digital li	nput	Lock
🗸 🍥 Digital C	Jutput	
Port	Name	Value
16	DO0	
17	DO1	
18	DO2	
19	DO3	
20	DO4	
21	DO5	
22	DO6	
23	D07	
24	DO8	
25	DO9	
26	DO10	
27	D011	

The I/O interface shows the status of all digital IOs and analog IOs, and you can manually operate the IOs in this interface in the "unlocked" state Unlock, while the IOs in the "locked" state cannot be manually operated.

After unlocking, you can rename the IOs to make them easier to program.

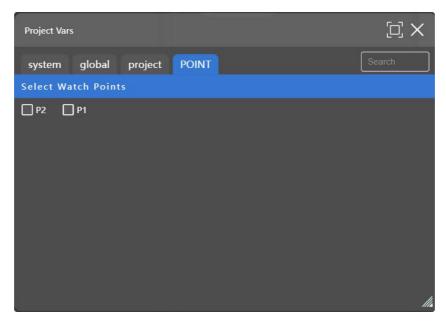
The mandatory option forces the corresponding input to be changed to a manually selected state.

7.3.8 Variable Management

Project Vars		Ξ×
system global project PO	INT	Search
Name	Туре	Operation
∧ ☐ ibianlaing	INT	2 d

Under the variable label, defined variables can be stored. For specific details of each type of variable, please refer to Chapter 8.

Classification of variables


System: Stores DI/DO, AI/AO and other variables. Users are not allowed to create, edit or delete variables.

Global: Variables with a scope of "global", allowing users to create, edit or delete variables.

Project: Variables with a scope of "project", allowing users to create, edit or delete variables.

POINT variable

During the program's operation, by selecting the corresponding pose, the interface will refresh in real time to display the current point position variables.

Variable search

Search

Enter the variable name in the search box to search for the corresponding

variable.

Create a new variable

Add variable	8		$\square \times$
Variable Cla	ass:	Project	~
Туре		INT	~
Name		Search	
Variable [•]	Value	•	
INT			~
value(int)		0	
		Save	

In the Variable tab, you can click "Add variable" button to add a new variable, select a different variable classification, type then add the selected variable classification, type, specific definitions refer to the introduction of variables.

The type should add the selected variable classification and type. For specific definitions, please refer to the variable introduction.

Variable monitoring

Select the variable you want to monitor and expand it to view the running value. Currently, up to 10 variables can be viewed at the same time.

Edit variable

Click button to edit the variable name, hold line variable and value for the current variable. The variable category and variable type cannot be changed.

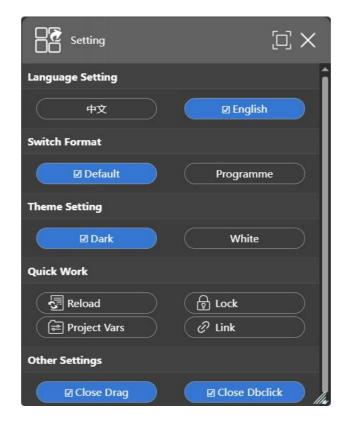
Delete the variable

Click button to delete the variable.

Save

Save variables

Click button


(save variable) to save the variable to the controller.

7.3.9 Project Management Area

In the Project Management menu, you can manage the projects.

Project settings, switching language, switching layout, switching theme, refreshing page, locking window, variable management, and setting online options; you can also set whether the program tree can be dragged and dropped for commands, and whether double-click is enabled in the tutorial interface.

New Project, create a new robot project;

Save project, when the button of save project is "red", the changes of the current project have not been saved, when the button of save project is "blue", the changes of the current project have been saved;

Project management, you can download, copy and delete the saved project;

Import project, import the project saved locally;

Run, run the current project (single-step execution, automatic execution), running the project must be in "automatic mode".

	Manage project		ЪХ	
		Please enter the project na	am Q	
	1. Project20250	414103926 🕒 [
	2. Project20250	403144239 🕒 🛽	Ì 🗊	
	3. pSocket_040	3 🗋 🕻		
	4. Project20250	403102925 🕒 🛽		
	5. Project20250	401164708 🕒 [
In the Project Man	agement dialog box,	is to downloa	ad the projec	ct, is to copy
the project, 🔟 is	to delete the project			

7.3.10 Speed ratio adjustment area

The speed rate bar for movement can adjust the speed rate. The values for manual jog mode and automatic operation mode are independent. The value range is 1% to 100%.

The actual running speed of the robot in automatic mode = the speed of motion instructions × speed ratio.

In manual mode, the joint jogging speed is 100% of the maximum joint jogging speed, the Cartesian jogging linear speed is 100% of the maximum Cartesian jogging linear speed, and the Cartesian jogging rotational speed is 100% of the maximum Cartesian jogging rotational speed. These values can be modified in the relevant options of the settings tab.

7.4 Settings tab

7.4.1 Basic

When saving parameters, the robot will automatically power off. When powered on again, the new parameters will be applied.

7.4.1.1 IP address

Double-click the IP address to change the robot's IP address. The change will take effect after the control cabinet is powered off and restarted.

7.4.1.2 Serial number

The serial numbers of the entire machine, control cabinet, robotic arm, and each joint are the unique identifiers for each component of the robot. The serial number of the entire machine will also be marked on the labels of the robotic arm and control cabinet.

7.4.1.3 Default tools

By creating a variable of type TOOL in the variable, you can select the created tool in the drop-down list of the default tool.

The TOOL variable contains the position and rotation of TCP relative to the robot's end flange, the mass of the tool, the center of mass of the tool (relative to the TCP coordinate system), and the inertia tensor of the tool.

The default tool is the tool parameter loaded at startup. Incorrect selection of the default tool may cause the robot to shut down, and in severe cases, it may damage the robot's joints.

7.4.1.4 Default load

By creating a variable of the PAYLOAD type in the variable, you can select the created payload in the default payload drop-down box.

The PAYLOAD variable contains the mass, center of mass, and inertia tensor of the payload.

The default load is the load parameter that is loaded when the machine starts up. Selecting an incorrect default load may cause the robot to shut down, and in severe cases, it may damage the robot's joints.

7.4.1.5 DH Parameters

Users can view the DH parameters of this robot here.

7.4.1.6 Installation

You can choose a preset installation method or customize the installation offset and rotation relative to the world coordinate system. Once the robot is installed and fixed, the installation rotation and offset will not change.

7.4.1.7 xyz offset

The installation-offset parameter represents the offset of the robot base relative to the world coordinate system. This parameter has no practical significance in a single-robot system. In a multi-robot system, it can indicate the relative position relationship between robots.

7.4.1.8 abc rotation

The parameters for installation-rotation are related to the installation posture of the robot. When installing at other angles, parameter settings need to be made in the installation-rotation. After setting the parameters, the robot model on the right will rotate in real time according to the input parameters. When the simulated robot posture is consistent with the actual one, click the save button. After re-powering on, the parameters will take effect.

7.4.2 Tools, load, coordinate system

7.4.2.1 Tools

The robot can store up to 16 tool parameters, among which parameter No. 0 cannot be modified. Tool parameters can be generated through user calibration or freely inputted with numerical values. The meanings of the tool parameters are as follows:

Parameter	Parameter	Data type	Parameter Meaning
TOOL	x	real	The displacement offset of the TCP in the x-
Used to			direction with respect to the flange coordinate
record tool			system in mm.
parameters	У	real	The displacement offset of the TCP in the y-
that define			direction with respect to the flange coordinate
tool end			system in mm.
displacement	Z	real	The displacement offset of the TCP in the z-
and rotation			direction with respect to the flange coordinate
relative to the			system in mm.
robot flange.	а	real	The Euler angle of rotation of the TCP with
			respect to the z-axis of the flange coordinate
			system, in deg.
	b	real	The Euler angle of rotation of the TCP with
			respect to the y' axis of the flange coordinate
			system, in deg.
	С	real	The Euler angle of rotation of the TCP with
			respect to the x'' axis of the flange coordinate
			system, in deg.
dyn(LoadDyn)	M	real	The wight of the tool in kg.
is used to			
store the			
robot end			
tool and load			
quality			
information			
parameters.	N Asc	raal	The offect of the contex of area it. C of the
Pos The position	Mx	real	The offset of the center of gravity C of the
The position of the			mounted tool or clamped load in the X direction of the coordinate system OTool-XYZ
installed tool			in mm.
or load on	My	real	The offset of the center of gravity C of the
the		i edi	mounted tool or clamped load in the Y
coordinate			direction of the coordinate system OTool-XYZ
system			
System			in mm.

OTool-XYZ.	Mz	real	The offset in mm of the center of gravity C of
			the mounted tool or clamped load in the Z
			direction of the coordinate system OTool-XYZ.

7.4.2.2 Load

The robot can store up to 16 load parameters, among which parameter No. 0 cannot be modified. The load parameters can be generated by user calibration.

Or enter values freely. The meanings of the load parameters are as follows:

Parameter	Parameter	Data type	Parameter Meaning
dyn(LoadDy	М	real	The weight of payload
n)			
Used to			
store robot			
end tool and			
load quality			
information			
parameters.			
CenterPos	Mx	real	The offset of the center of gravity C of the
The position			clamped load in the X direction of the
of the			coordinate system OTool-XYZ in mm.
installed tool	My	real	The offset of the center of gravity C of the
or load on			clamped load in the Y direction of the
the			coordinate system OTool-XYZ in mm.
coordinate	Mz	real	The offset of the center of gravity C of the
system			clamped load in the Z direction of the
OTool-XYZ.			coordinate system OTool-XYZ in mm.

7.4.2.3 Coordinate system

The robot can store up to 16 coordinate system parameters, among which parameter 0 cannot be modified. The coordinate system parameters can be generated through user calibration or freely inputted with numerical values. The meanings of the coordinate system parameters are as follows:

Parameter	Data type	Parameter Meaning
x	real	The displacement offset of the user coordinate system origin relative to the world coordinate system in the x-direction in mm.
У	real	The displacement offset of the user coordinate system origin relative to the world coordinate system in the x-direction in mm.
Z	real	The displacement offset of the user coordinate system origin relative to the world coordinate system in the x-direction in mm.
а	real	The Euler angle of rotation of the user coordinate system relative to the z-axis of the world coordinate system, in deg.
b	real	Euler angle of rotation of the user coordinate system relative to the y' axis of the world coordinate system, in deg.
С	real	Euler angle of rotation of the user coordinate system with respect to the x'' axis of the world coordinate system, in deg.

7.4.3 Others

The master switch can be used to determine whether to enable the security rules. When

the master switch is turned off, no rule will take effect.

7.4.3.1 Joint overspeed protection

Whether to enable the safety overspeed protection. After disabling it, the system will not detect whether the joint speed exceeds the joint overspeed threshold.

7.4.3.2 Joint hypermobility threshold

The overspeed threshold for each joint.

7.4.3.3 End-of-travel overspeed protection

Whether to enable the safety overspeed protection. If it is turned off, the system will not detect whether the terminal speed exceeds the threshold.

7.4.3.4 Joint collision detection sensitivity

Users do not need to be concerned about the specific threshold parameters for each axis. The threshold is dynamically changing. 100% represents the highest sensitivity, and 0% means it is off. The more accurate the load configuration is, the higher this setting can be.

7.4.3.5 Joint collision detection threshold

Each joint of the Codroid S series robot is equipped with a torque sensor to detect the torque applied to the joint. When the robot is powered on and the detected torque value exceeds the output torque limit threshold of the joint, the robot will report an error and power off. At this point, it is necessary to check the cause of the situation. After resolving the issue, power on the robot again.

The possible reasons for the robot exceeding the torque limit are:

- a) The actual load at the end does not match the setting.
- b) 2. The robot collided.
- c) 3. The settings for speed and acceleration are unreasonable.
- d) 4. Other circumstances.

Users can adjust the threshold as needed for their specific applications, but it is not recommended to disable the protection, as this may lead to potential security risks.

7.4.3.6 Joint Limiting

Joint limit is used to restrict the movement of each robot joint in the joint space, defining the position range of each joint. Customers can modify the threshold according to the actual application. If the threshold is set too small, it will affect the movement range of the robot.

7.4.3.7 End stop limit

The end limit is used to restrict the movement position of the robot's TCP, defining the position range in the x, y, and z axes directions and rotation. Customers can modify the threshold according to the actual application. If the threshold is set too small, it will affect the robot's movement range.

7.4.3.8 Safe positions

The robot's posture at the set safety position can be configured to output a signal in the set IO when the robot is at that position.

7.4.3.9 Manual mode terminal speed limit

In manual mode, the maximum Cartesian speed of the robot can be jogged. Under any circumstances in manual mode, the speed will not exceed this value.

7.4.3.10 Load verification sensitivity

When the drag robot function is enabled, the robot will verify whether the current load is correct before the function is turned on. If the actual load deviates too much from the theoretical load, the robot will not start dragging to protect itself and the operator. Adjusting the sensitivity level can limit the deviation threshold.

7.4.3.11 Drag enable sensitivity check

At the moment the drag button is pressed, the robot will recheck whether the load configuration is correct to prevent sudden movement of the robot caused by the user disabling collision detection while the load configuration is incorrect.

7.4.4 Sports

Motion parameters define the maximum values of the robot's speed, acceleration and jerk in both automatic and manual modes.

Optimization of sports performance

When enabled, it will optimize the jittering situation during low-speed movement.

7.4.4.1 Point movement

Joint speed

In manual mode, the maximum speed of joint jogging is 30°/s. You can limit the maximum speed of joint jogging here.

End linear velocity

In manual mode, the maximum linear speed of Cartesian point movement is 250 mm/s. You can limit the maximum linear speed of Cartesian manual point movement here.

Angular velocity at the end

In manual mode, the maximum angular velocity of the end rotation for Cartesian point movement is 30°/s. You can set the maximum angular velocity of the end rotation for Cartesian manual point movement here.

7.4.4.2 It's time for exercise.

Joint speed

In manual mode, the default joint angular velocity for moving to a point in joint mode is 30° /s, with a maximum of 90° /s.

End linear velocity

In manual mode, the Cartesian linear velocity for moving to a point in Cartesian mode is 250 mm/s by default, with a maximum of 1000 mm/s.

Angular velocity at the end

In manual mode, the default Cartesian angular velocity for moving to a point in Cartesian mode is 30°/s, with a maximum of 90°/s.

7.4.4.3 Automatic

Maximum joint speed

The upper limit of the speed that the robot can reach when moving in automatic mode. After setting the maximum speed, when creating a new variable of the SPEED type, the speed setting of the TCP will be restricted to be less than this maximum value.

Maximum joint acceleration

In automatic mode, the joint acceleration limits the maximum value of acceleration. Users can adjust the maximum acceleration value appropriately according to the application, which can increase the movement tempo. However, if the acceleration is set too high, it may cause the robot to shake when starting and stopping. Long-term use of unreasonable acceleration may cause damage to the joint reducer.

Joint acceleration increment

The upper limit of the jerk that the robot can achieve during movement in automatic mode. The smaller the value, the smoother the movement process, but the longer the time consumed.

Maximum terminal velocity

The maximum linear speed of the robot end effector in automatic mode. After setting the maximum speed, when creating a new variable of the SPEED type, the speed setting of the TCP will be restricted to be less than this maximum value.

Maximum acceleration at the end

In automatic mode, the maximum value of the linear acceleration at the robot's end is limited. Users can adjust the maximum acceleration value appropriately according to the application, which can increase the motion cycle. However, if the acceleration is set too high, it may cause the robot to shake when starting or stopping. Long-term use of an unreasonable acceleration setting may cause damage to the joint reducer.

Add acceleration at the end.

The upper limit of the linear acceleration that the robot can achieve when moving in automatic mode. The smaller the value, the smoother the movement process, but the longer the time consumed.

Pause time

The deceleration time when the robot program is paused in automatic mode.

7.4.5 Register communication

Since ModbusTCP, ProfiNet, and EtherNet/IP all operate on the same register address, only one communication protocol can be selected for use. If none of the communication protocols are to be used, the enable function should be turned off. To use ProfiNet or EtherNet/IP, a communication module for the entity must be added. After modifying the settings, the changes will take effect only after saving and restarting the robot.

7.4.5.1 ModbusTCP

Protocol Version

The current software version of ModbusTCP used by the robot.

• Port

The port used by the ModbusTCP protocol when the robot is in the standby state.

Slaves address

The address where the robot stands when it is in the ready position.

7.4.5.2 ProfiNet

Protocol Version

The current ProfiNet software version used by the robot.

Slaves name

The name of the robot ProfiNet slave station can be modified by double-clicking. The modification will take effect after the robot is restarted.

• IP

The IP address of the robot ProfiNet module can be modified by double-clicking to change the name. The changes will take effect after the robot is restarted.

• Data mode

The ProfiNet protocol data mode supported by different brand devices varies slightly. You can choose either big-endian mode or little-endian mode.

7.4.5.3 EtherNetIP

Protocol Version

The current software version of EtherNet/IP used by the robot.

• IP

The IP address of the robot's EtherNetIP module. Double-click to change the name and reboot the robot before it takes effect.

• Data model

The EtherNet/IP protocol data modes supported by different brand devices are slightly different, and you can choose either big-endian mode or little-endian mode.

7.4.6 IO

7.4.6.1 DI Function Configuration

When the system detects that the corresponding digital input variable meets the trigger conditions, it executes the corresponding usage function. Click to create a new function. You can add multiple actions with the same variable and condition to accomplish the effect of multiple actions.

Stop dragging: Disable manual dragging of the robot in the mode.

Power on: Enable the robot by powering it on.

Power on in rescue mode: Enable the robot in rescue mode, which temporarily disables safety checks; Power off: Disable the robot by cutting off power.

Switch to automatic mode: The robot switches to the automatic operation program mode.

Switch to manual mode: The robot switches to manual teaching mode.

Run the last saved program: Run the last saved program in the automatic operation mode; Run the specified program: Run the program specified in the drop-down box in the automatic operation mode.

Stop operation: The robot stops running the program.

Pause operation: The robot pauses the running program.

Continue running: Resume the paused program;

Error reset: Clear the robot's error report;

Protective stop: Protective emergency stop of the robot;

7.4.6.2 DO Function Configuration

When the system detects that the trigger conditions are met, the corresponding digital output function is executed. Click to create a new function configuration. Only one operation can be added for the same variable.

Exception: When an abnormality occurs in the robot, the corresponding electrical level is output.

Program running: The corresponding level is output when the robot program is running;

Program pause: The robot outputs the corresponding level when the program is paused;

At safety position: The robot outputs the corresponding level when it is at the safety position.

7.4.7 MODBUS Master

Here, you can set the parameters of the MODBUS master (client). A connection can be established between the local machine and the MODBUS slave (server) at the target IP address. Each signal has a unique name and can thus be used in the program.

ModbusTCP Master	
Add Modbus Device	
Equipment Name: MODBUS_mb IP Address: 192.168.1.201 Port: 502 Reconnection Count: Modbus Packet Error: Connection State: Offline	Delete Device
Type Address Name Value Read single discrete input register 0 MODBUS_m9gru8x8 Image: Comparison of the second	Delata
🖾 Save	

· Add device

This button can be used to add a new MODBUS slave device.

· Delete device

This button can delete the MODBUS slave device and all its signals.

• Device name

The device name can be set to distinguish each device.

· IP address

The IP address of the MODBUS slave device can be changed here.

· Port

The port address of the MODBUS slave device can be changed here

Reconnection count

The number of times a TCP connection is closed and reconnected.

Modbus data pack error

The number of received data packets containing errors (i.e., invalid length, lost data, TCP socket errors).

Connection status

TCP connection status.

Add signal

This button can add signals to the corresponding MODBUS slave device.

• Delete signal

This button can delete the signal from the corresponding MODBUS slave device.

• Туре

Select the signal type. Available types include:

Read a single coil register (read output coil), read discrete input register (read input coil), read a single holding register (read output register), read input register (read input register), write a single coil register (write output coil), write a single holding register (write output register).

· Address

To display the address of the remote MODBUS slave device, you can select a different address. The valid address depends on the manufacturer and the configuration of the remote MODBUS slave device.

· Name

Names can be assigned to signals. Signal names are used when the signals are utilized in the program.

· Frequency

It can be used to change the update frequency of the signal. The update frequency refers to the frequency at which requests are sent to the remote MODBUS slave device to read or write signal values. When the frequency is set to 0, the MODBUS request will be initiated on demand using instructions in the program.

From device address

This text field can be used to set the specific slave device address for requests

corresponding to a particular signal. The value must be within the range of 0 to 255, with the default value being 255. If you need to change this value, it is recommended to first consult the manual of the remote MODBUS device to verify that the function is normal after the slave device address is changed.

· Response time [ms]

The time between sending a MODBUS request and receiving a response is updated only when the communication is active.

Overtime

The number of unresponded MODBUS requests.

Request Failed

The number of data packets that could not be sent due to an invalid socket status.

Actual frequency

The average frequency of signal status updates for the main station device (client). This value is recalculated each time a response is received from the slave station device (server).

Save

Save the settings and refresh all MODBUS connections. All MODBUS slave devices will be disconnected and reconnected. All statistical information will be cleared.

7.4.8 Panel IO

The IO settings can enable the analog output on the control cabinet panel and set the analog input mode.

When using the analog output port, a load must be connected; otherwise, the robot will report an error. If it is not in use, the corresponding port must be turned off.

When using the analog input port, it is necessary to specify the usage mode, either current mode or voltage mode; otherwise, the robot will report an error.

7.5 Log tab

The log module records some operation anomalies of users, provides relevant prompts, and offers assistance in using the software. Meanwhile, when encountering problems, it can display the corresponding window prompts for viewing, providing information to professionals for obtaining help and resolving issues.

ESTUN		PROJECT SETTING	RECORD MA	NAGE 🔒 admin 🕼 🗊
Number	File Name	Create Time	File Size	Operation
	OutputCtrl.txt	2025-4-14 16:02:40	407.89 KB	± Download Log
	OutputCtrl.1.txt	2025-4-14 10:45:46	96.42 KB	
	OutputCtrl.2.txt	2025-4-9 13:17:13	89.41 KB	± Download Log
	OutputCtrl.3.txt	2025-4-8 09:03:36	90.22 KB	
	OutputCtrl.4.txt	2025-4-7 09:19:29	367.67 KB	⊻ Download Log
	OutputCtrl.5.txt	2025-4-3 12:53:26	132.22 KB	
	OutputCtrl.6.txt	2025-4-3 10:32:28	145.94 KB	⊻ Download Log
	OutputCtrl.7.txt	2025-4-1 17:21:11	1 MB	
	OutputCtrl.8.txt	2025-4-1 17:00:56	111.12 KB	⊻ Download Log
	OutputCtrl.9.txt	2025-3-31 13:34:48	88.66 KB	

Click the exclamation mark button at the top right corner of the program to view the error message. If the button is flashing, it indicates that there is an error in the program and the program will stop running.

Only the latest 10 entries are retained in the system log. Click the button (log download) in the Logs tab to download this log message locally.

7.6 Management tab

The management interface can import or export some settings or engineering parameters of the controller, as well as manage users.

ESTUN	PROJECT	SETTING	RECORD	MANAGE	S admin
Manage Update User List Manage user					
Export user config Import user config					
Select the config to export					
参数设置(导入完成后必须立即重启)					
全局变量					
ModbusTCP主站配置(导入完成后必须立即重启)					
● 工具、负载、坐标系参数(导入完成后必须立即重启!)					
高存器配置(导入完成后必须立即重启!)					
● IO配置(导入完成后必须立即重启!)					
机械参数(零点、DH、序列号、拖动参数,谨慎导入,导入完成后必须立即重启!)					
Export compression file name].zip				
Confirm Export					

The meanings of the import and export configuration are as follows:

· Parameter settings (take effect after restart)

Parameter settings in the Robot Settings tab.

· Global variable

Global variables in robot engineering are not imported or exported along with the project, so all users can manage them uniformly here.

 $\underline{+}$ Download Log

ModbusTCP Master Configuration (Effective after restart)

•

The ModbusTCP master configuration set by the user in the settings tab.

Manage Update	User List	Manage user		
Export user config	Import us	ser config		
Select t	he con	fig to exp	oort	
\bullet	参数设置	置(导入完成后必须立	即重启)	
ullet		全局变量		
\bigcirc	ModbusTCP	主站配置(导入完成后	必须立即重启)	
	工具、负载、坐	标系参数(导入完成后	必须立即重启!)	
	寄存器配	置(导入完成后必须立	[即重启!)	
\bullet	IO配置	(导入完成后必须立即	〕重启!)	
- 机械参数(零)	点、DH、序列号	号、拖动参数,谨慎导 <i>)</i>	、导入完成后必须立即重启!)	
Export compression].zip
		Confirm Export		

In the user list, the admin user can create and delete users here.

The initial accounts and passwords available are as follows. Different accounts have different permissions. For details, please refer to the appendix.

Account	Password	Level
user	123456	User
admin	123456	Administrator

Among the registered users, new users can be created and assigned usernames, passwords, and permission levels.

Chapter 8 Introduction to Variables

8.1 Variable Overview

Different domains support different variable types, as described specifically below:

- · System domain: System-defined variables that cannot be edited.
- Global domain: IO data types, PLC data types, socket data types, position data types, area data types, basic data types, clock data types, palletizing data types, system data types.
- Engineering domain: IO data types, socket data types, position data types, basic data types, palletizing data types, system data types.

The following "names" are reserved by the system. Names are not case-sensitive, and users cannot create variables with the same name:

abs, acos, and, asin, assert, atan, break, ceil, collectgarbage, coroutine, cos, debug, deg, do, dofile, else, elseif, end, error, exp, false, findEnd, floor, fmod, for, format, function, getAt, getmetatable, goto, huge, if, in, io, ipairs, left, load, loadfile, local, log, math, max, min, modf, next, nil, not, or, os, package, pairs, pcall, pi, print, rad, random, randomseed, rawequal, rawget, rawset, real, repeat, require, return, reverse, right, select, strcmp, setmetatable, sin, sqrt, string, table, tan, then, tonumber, tostring, true, type, until, while, xpcall, AI, AO, APOS, APosToCPos, APosToStr, AREA, AreaActivate, AreaDeactivate, ARRAYS, BitAnd, BitNeg, BitOr, BitXOr, BitLSH, BitRSH, BOOL, CalcTool, CalcCoord, CALL, CenterPos, CLKRead, CLKReset, CLKStart, CLKStop, CLOCK, CompareAl, CompareSimAl, CPOS, CPosToAPos, CPosToCPos, CPosToStr, DAPOS, DCPOS, DI, DO, ELSE, ELSIF, ENDIF, ENDWHILE, EXTCPC, GetCamPos, GetCurAPos, GetCurCPos, GetCurOverRide, GetDI8421, GetMatrix, GetSimAlToVar, GetSimDl8421, GetSimDlToVar, GetTrackld, GOTO, Hand, InertiaTensor, INT, IToStr, LABEL, LoadDyn, MovArch, MovC, MovCW, MovCircle, MovCircleW, MovE, MovH, MovJ, MovJRel, MovJSearch, MovL, MovLRel, MovLSearch, MovLSync MovJSyncQuit, MovLSyncQuit, MovLW, OnDistance, OnParameter, PalletFromGet, PalletFromPut, PalletReset, PalletToGet, PalletToPut, PAYLOAD, PLCBOOL, PLCDINT, PLCINT, PLCREAL, POLYHEDRON, PolyhedronAreaActivate, PolyhedronAreaDeactivate, POSCFG, POSITIONER, PulseOut, PulseSimOut, ReadModbusReg, REAL, RefRobotAxis, RET, RETURN, RToStr, RUN, SendMessage, SetAxisVibraBLevel, SetAO, SetCartDyn, SetCoord, SetDIEdge, SetDO, SetDO8421, SetExternalTCP, SetJointDyn, SetMotionMode, SetOverRide, SetPayload, SetPositioner, SetRestorePC, SetRtInfo, SetRtToErr, SetRtWarning, SetMatrix, SetSimAO, SetSimAOByVar, SetSimDIEdge, SetSimDO, SetSimDO8421, SetSimDOByVar, SetTargetPos, SetTool, SetSyncoord, SimAI, SimAO, SimDI, SimDO, SocketClose, SocketCreate, SocketReadInt, SocketReadReal, SocketReadStr, SocketSendStr, SoftFloatStart, SoftFloatStop, SPEED, Stop, STRING, StrTol, StrToR, SYNCOORD, SynCToUserC, TOOL, Tracking, TranStrToApos, TranStrToCpos, TranStrToInt, TranStrToReal, TrigCam, trimLeft, trimRight, USERCOOR, Wait, WaitAI, WaitCondition, WaitConvDis, WaitDI, WaitDI8421, WaitFinish, WaitFinishCAM, WaitSimAI, WaitSimDI, WaitSimDI8421, WaitWObj, WEAVE, WHILE, WriteModbusReg,

8.2 Variable

8.2.1 POSE

Store the absolute coordinate values and offset values of each axis in the Cartesian space of the robot joint.

int in the
int in the coordinate
oorumate
int in the
int in the
coordinate
inst insthem
int in the
coordinate
the TCP
is of the
item.
n of the
y-axis of
e system.
TCP point
ne fixed
CP point
ence
CP point
ence
CP point
ence
of rotation
to the x-

		axis of the reference coordinate system.
db	real	The Euler angle offset of the TCP point
		rotated with respect to the y-axis of the
		reference coordinate system.
dc	real	The offset of the Euler angle for the
		rotation of the TCP point with respect to
		the z-axis of the reference coordinate
		system.

8.2.2 Basic Data Types

Parameter	Data type	Scope	Remark
STRING	String	Global, Engineering,	String
		Tasks	
BOOL	Boolean	Global, Engineering,	Numeric range: true, false
		Tasks	
INT	Plastic	Global, Engineering,	Numeric range: -
		Tasks	9999999999999
			9999999999999999
REAL	Real	Global, Engineering,	Numeric range: -
		Tasks	99999999999~
			9999999999999999
BoolOneArray	Boolean	Global, Engineering,	Data length: 1~255
	Arrays	Tasks	
IntOneArray	Plastic	Global, Engineering,	Data length: 1~255
	Arrays	Tasks	
RealOneArray	Real Arrays	Global, Engineering,	Data length: 1~255
		Tasks	

8.2.3 SPEED

It is used to define the movement speed of the robot and external axes. For the convenience of users, the system presets commonly used speed variables (system variables that are not allowed to be modified by users), and at the same time, it supports users to create, delete, modify and other operations on this variable in the three variable scopes of global, project and program.

Parameter	Data type	Parameter Meaning
per	real	Joint Speed Percentage. Used to specify the speed of
		movement during joint movement commands,
		applicable to MovJ and other commands, value range
		1%~100%.
tcp	real	TCP Linear Velocity. Define the linear velocity of the
		robot end point, used for MovL, MovC and other linear
		arc motion instructions.
ori	real	Spatial Rotation Velocity. Define the rotation speed of
		robot end point attitude, used for MovL, MovC and
		other linear circular motion instructions.
exj_l	real	External Axis Speed. Defines the speed of the external
		linear axis motion.
exj_r	real	External Axis Angular Velocity. Defines the motion
		speed of the external rotary axis.

8.2.4 ACC

This parameter is used to define the motion acceleration of the robot and external axes. To achieve a sufficiently fast motion speed, this parameter is usually adjusted, but it is not recommended to set the value too high, as it may cause vibrations and even damage to the joints after long-term operation.

Parameter	Data type	Parameter Meaning
joint	real	Joint Acceleration Hundred. Used to specify the motion
		acceleration during joint motion commands, for
		commands such as MovJ.
tcp	real	TCP Line Acceleration. Defines the line acceleration at
		the robot's end point, used for MovL, MovC, and other
		linear circular motion commands.
ori	real	Spatial Rotation Acceleration. Defines the rotational
		acceleration of the robot's end point attitude, used for
		MovL, MovC and other linear circular motion
		instructions.

8.2.5 ZONE

It is used to define how a certain motion ends or the size of the turning area between two motion trajectories. For the convenience of users, the system presets commonly used transition variables (system variables that users are not allowed to modify), and at the same time, it supports users to create, delete, modify and perform other operations on this variable within the three variable scopes of global, project and program.

Parameter	Data type	Parameter Meaning
per	real	Turning percentage. Applies to motion commands such
		as MovJ,MovL,MovC, etc. Indicates how far away from
		the target point the turn will start.
dis	real	Cartesian space turn area size. Used for MovL,MovC
		and other linear arc motion instructions, defines the
		size of the turn zone of the Cartesian space trajectory,
		i.e., when the robot moves to dis millimeters away from
		the target point, it starts to turn to move toward the
		next target point, the unit is mm.

8.2.6 CLOCK

The value of CLOCK stores clock information.

Parameter	Data type	Parameter Meaning
state	bool	Enable state of the clock variable.
value	int	The count value of the clock variable.

8.2.7 Socket

The network connection Socket variable.

Parameter	Data type	Parameter Meaning
Socket 名称	String	Non

8.2.8 INTERRUPT

Interrupt variable.

Parameter	Data type	Parameter Meaning
value	String	Non

8.2.9 LsScale

The LsScale type variable is used to record the gain ratio threshold parameters of each joint axis, which helps to improve the low-speed jitter phenomenon of the robot within a certain speed range. It is used in conjunction with the speed range threshold parameters. The setting range is [100, 1000], with the unit being %. This variable can only be created and modified in the global domain.

Parameter	Data type	Parameter Meaning
J1	int	Gain ratio threshold for J1 axis in %.
J2	int	Gain scale threshold value for J2 axis in %.
J3	int	Gain proportional threshold value for J3 axis in %.
J4	int	Gain ratio threshold value for J4 axis in %.
J5	int	Gain ratio threshold value for J5 axis in %.
J6	int	Gain scale threshold for J6 axis in %.

8.2.10 LsThresh

The LsThresh type variable is used to record the speed range threshold parameters of each joint axis, which is used to improve the low-speed jitter phenomenon of the robot within a certain speed range segment. It is used in conjunction with the gain ratio threshold parameter. The setting range is [10, 1000], with the unit of r/min. This variable can only be created and modified in the global domain.

Parameter	Data type	Parameter Meaning
J1	int	Speed interval threshold for J1 axis, in r/min.
J2	int	Speed interval threshold for J2 axis, in r/min
J3	int	J3 axis speed interval threshold in r/min.
J4	int	Speed interval threshold for J4 axis in r/min.
J5	int	Threshold value of the speed interval in r/min for the J5
		axis.
J6	int	Speed interval threshold in r/min for J6 axis

8.2.11 VibrationSuppression

Vibration Suppression Parameters: Vibration suppression parameters.

Parameter	Data type	Parameter Meaning
Frequency X	real	Intrinsic frequency of vibration in the X direction
Frequency Y	real	Intrinsic frequency of vibration in Y direction
Frequency Z	real	Intrinsic frequency of vibration in the Z-direction

Damping Ratio X	real	Damping ratio in X direction
Damping Ratio Y	real	Damping ratio in Y direction
Damping Ratio Z	real	Damping ratio in Z direction

8.2.12 Matrix2

The Matrix2 type variable is used to record a two-dimensional array.

Parameter	Data type	Parameter Meaning
Matrix2	string	Array name
Name		

8.2.13 Matrix3

The Matrix2 type variable is used to record a two-dimensional array.

Parameter	Data type	Parameter Meaning
Matrix3	string	Array name
Name		

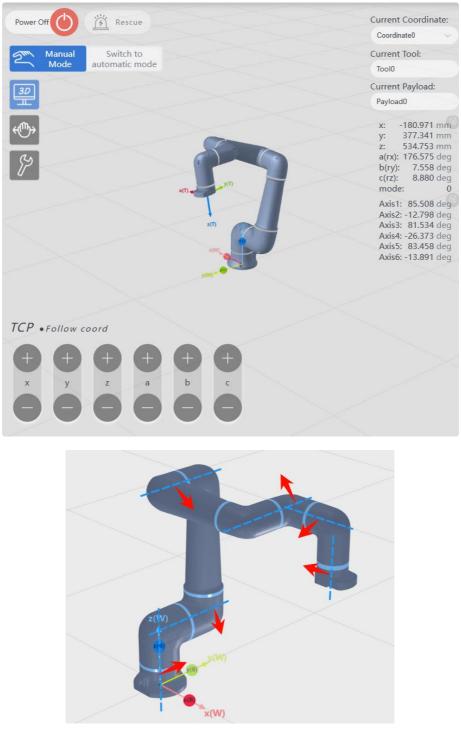
8.2.14 Matrix4

The Matrix2 type variable is used to record a two-dimensional array.

Parameter	Data type	Parameter Meaning
Matrix4	string	Array name
Name		

8.2.15 Matrix9

The Matrix2 type variable is used to record a two-dimensional array.

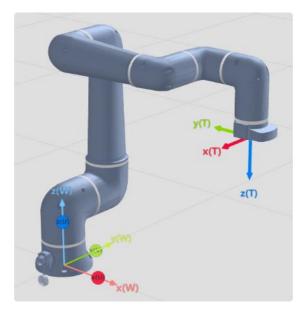

Parameter	Data type	Parameter Meaning
Matrix9	string	Array name
Name		

Chapter 9 Calibration

This chapter will describe the joint coordinate system, world coordinate system, user coordinate system, tool coordinate system and their usage.

9.1 Joint coordinate system

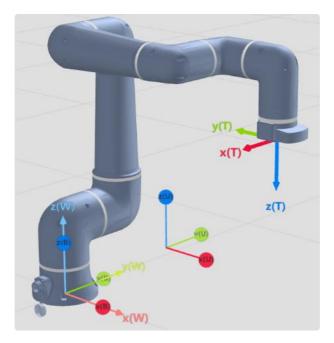
The joint coordinate system or joint space refers to the independent movement of robot joints, which is called joint motion.

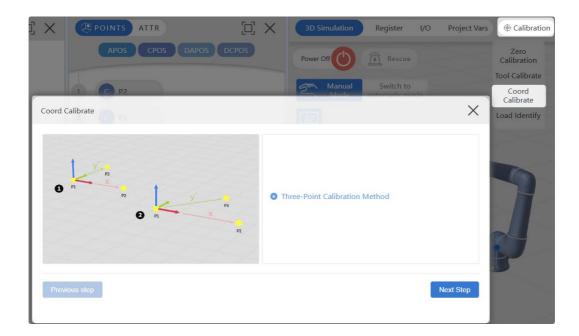


9.2 World coordinate system

The Cartesian coordinate system of the Codroid robot is a right-handed coordinate system, and its Euler angle format is X-Y-Z fixed angles. For example, the pose [900mm, 200mm, 1200mm, 20°, 30°, 45°] means that it first moves to the position of x=900mm, y=200mm, z=1200mm in the reference coordinate system, and then rotates the end TCP point as the center of rotation. First, it rotates the end along the X-axis of the reference coordinate system by 20°, then rotates the end along the Y-axis of the world coordinate system by 30°, and finally rotates the end along the Z-axis of the world coordinate system by 45°.

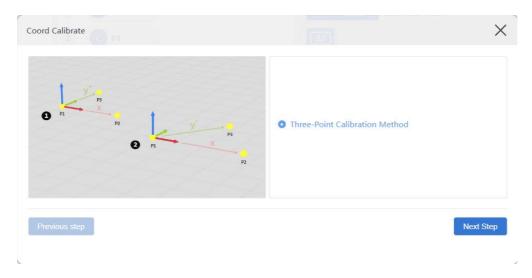
When leaving the factory, the robot is by default located at the position [0, 0, 0, 0, 0, 0] in the world coordinate system, meaning that the pose of the robot's base coordinate system coincides with that of the world coordinate system. The base of the robot is oriented such that the Y-axis points in the negative direction and the Z-axis points


towards the interior of the base in the robot's base coordinate system.


The installation of the robot can be selected from preset installation methods or customized with its installation offset and installation rotation relative to the world coordinate system.

9.3 Coordinate System and Calibration

Users can define the coordinate system. The user-defined coordinate system is offset based on the world coordinate system. The offset values can be directly input by users on the settings page or determined through the calibration function with assistance.



When it is necessary to calibrate the user coordinate system, the "Coordinate System Calibration" assistant can be used to create it.

9.3.1 Three-point calibration method

Define the origin, the direction of the x+ axis and the direction of the y+ axis. The plane is defined by the right-hand rule, so the z+ axis is the cross product of the x+ axis and the y+ axis.

9.3.1.1 Start calibration

Define the origin of the user coordinate system. Move the robot's TCP to the origin of the coordinate system to be defined by point-to-point motion, click Origin Teach and then proceed to the next step.

	х:	-180.9708788, mm	a:	176.57506938 deg
P1	у:	377.34112405 mm	b:	7.5584737764 deg
	z:	534.75271746 mm	c:	8.8802323311 deg

2. Define the positive x-direction of the user coordinate system. Move the robot's TCP

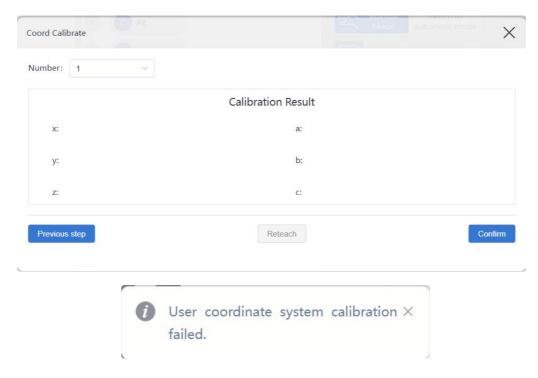
to the positive x-direction of the coordinate system to be defined and click then proceed to the next step.

+		x:	-94.03831752 mm	a:	176.57497286 deg
PI		y:	377.34529678 mm	b:	7.5585921132 deg
	P2	Z:	534.74708621 mm	c:	8.8802812158 deg

3. Define the y+ direction of the user coordinate system. Move the robot's TCP to the y

positive direction of the coordinate system to be defined and click Then next step.

9.3.1.2 Calibration successful


After clicking the confirmation button, the specific values of the successfully calibrated coordinate system will be automatically filled in the selected coordinate system number.

1 x: 2	 	ibration Result	
1		ibration Result	
x: 2			
	52746648	a:	0.006386225034151806
у: З	7813758	b:	0.010098283569774155
z: 4	2130858	c:	0.003274440259636563
5			
Previous 6		Reteach	Confirm

x+ Teach

9.3.1.3 Calibration failed

If the calibration result does not show any values and indicates calibration failure, please recalibrate and note that among the three points defined for calibration, namely the origin and x+ and y+, avoid having two or more identical points.

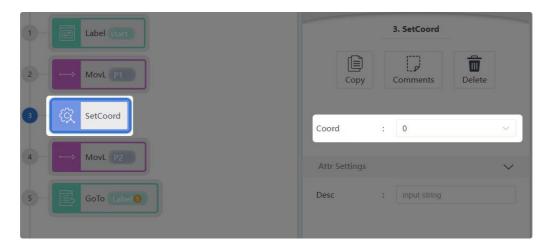
9.3.1.4 List of coordinate systems

In the Tools, Load, and Coordinate System options in the settings interface, all coordinate systems are recorded. Here, you can view or edit the values.

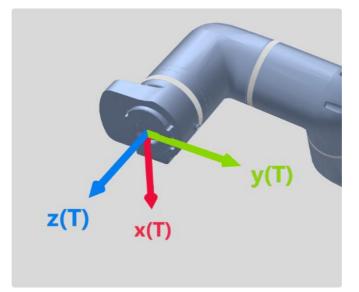
Base	Tool,Payload,Coordina	ato					
Tool,Payload,Coor	ioo, Payload, Coordina	ste					
Safety	>		Tc	ool (Unit: kg,mm)			
Move	>		Pay	load (Unit: kg,mr	n)		
Register Communi	~						
0	Coordinate (Unit: mm,deg)						
ModbusTCP Master	Number						e
IO on Board	0	0	0	0	0	0	0
	1	-94.03831752746	377.3452967813	534.74708621308	0.006386225034	0.010098283569	0.0032744402596
	2	0	0	0	10	20	0
	3	0	0	0	0	0	0
	4	0	0	0	0	0	0
	5	0	0	0	0	0	0
	6	0	0	0	0	0	0

9.3.2 Use the user coordinate system

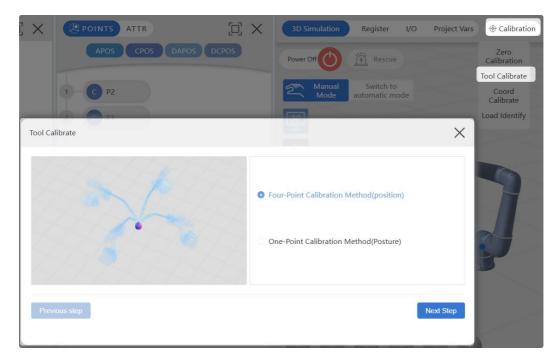
9.3.2.1 Use the user coordinate system when jogging.


When performing point-by-point movement of the robot at the end, you can choose to move along the current coordinate system. If the current coordinate system is selected as the user coordinate system, the point-by-point movement can be carried out along the

user coordinate system.

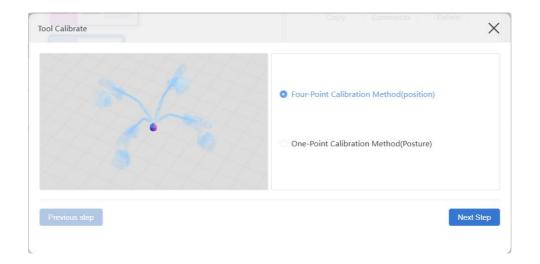

9.3.2.2 Switching coordinate systems in the program

Add the SetCoord command in the program tree and select the defined user coordinate system from the drop-down menu of "Coordinate System".



9.4 Tools and Calibration

Users can create new tool variables. The tool coordinate system is offset based on the default tool coordinate system (NOTOOL) at the end of the flange. The offset values can be directly input by the user or determined through auxiliary calibration. The origin of the default tool coordinate system is located at the center of the flange end, with the Z-axis pointing outward from the flange and the Y-axis pointing towards the installation locating pin hole.



When it is necessary to calibrate the tool coordinate system, the four-direction calibration method of "Tool Calibration" can be used to assist in calculating the position offset, or the one-point calibration method can be used to assist in calculating the rotation angle.

9.4.1 Four-direction calibration method

Manually move the robot (by point-to-point or dragging) to four different poses. Each time, make the tool tip touch the same needle tip placed in space and click the "Direction Teaching" button. After completing the four poses, the offset value of TCP relative to the center of the tool output flange can be obtained.

9.4.1.1 Start calibration

- a) The mobile robot brings the TCP (Tool Center Point) into contact with the tip of the needle placed in space.
- b) Click the Direction 1 Teach (orientation 1 teaching) button to record the current actual robot position.

Tool Calibrate	Copy Cor	nments Delete X
Sa	x: -33.75085548: mm	a: 176.57561983 deg
	y: 431.88032901 mm	b: 7.5600221461 deg
	z: 534.74253822 mm	c: 8.8784495286 deg
Previous step	Direction 1 Teach	Next Step
c) Click button Next Step (next)	to repeat steps 1 and 2 until	the fourth point, then
click button Confirm (OK) to	complete the direction instr	uction.

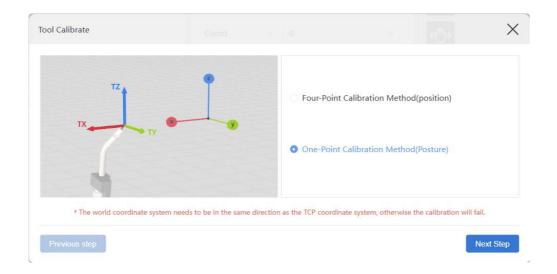
9.4.1.2 Calibration succussed

After clicking the "Confirm" button, the x, y, and z values of the successfully calibrated tool will be automatically filled in the selected tool number.

fool Calibrate			Delete
Number: 1	~		
	1	Calibration Result	
x:	2	16.594747421583	
y:	3	-45.030702658525634	
z:	4	73.33150758489201	
	5		
Previous	6	Reteach	Confirm
	7		

9.4.1.3 Calibration failed

If the "Calibration TOOL" window shows no result and prompts "4-point calibration failed", it indicates that the calibration has failed.


Tool Calibrate			nts Delete X
Number: 1	×.		
	Calibration Result		
x:			
y:			
Z:			
Previous step	Reteach		Confirm
	-		
	<i>i</i> 4-point calibration failed	Ι.	×

Please start the calibration again and make sure that:

- the four pose changes are large enough
- the needle tips are aligned (the tool center point is in sufficient contact with the needle tips in space).

9.4.2 One-point calibration method (attitude)

After completing the four-direction calibration method (to obtain the translational relationship of the TCP relative to the center of the tool output flange), the certain calibration method (attitude) can be started to obtain the rotational relationship of the TCP relative to the center of the tool output flange.

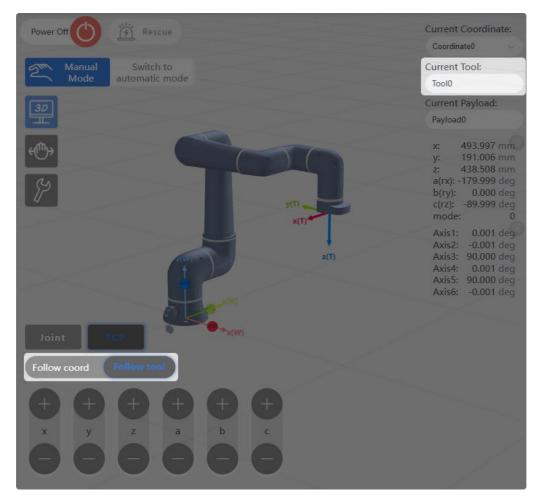
9.4.2.1 Start calibration

Move the robot so that the desired tool coordinate system orientation coincides with

the robot's world coordinate system orientation, and click the 方向示教 (orientation teaching) button to complete the Orientation Teaching.

TV -			x:	-228.0421503 mm	a:	9.4892027766 deg
		ТХ	y:	419.6974296C mm	b:	-0.636142364 [°] deg
	2		z:	840.12855664 mm	c:	-5.699225736 [,] deg

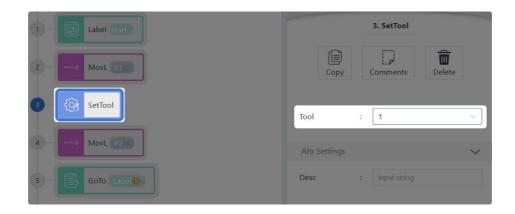
9.4.2.2 Calibration results


When calibrating the posture, the robot cannot verify the accuracy. The user can visually check by manually moving the tool coordinate system.

After obtaining the translation and rotation of the TCP (Tool Center Point) relative to the center of the tool output flange through the execution of the "Four-Point Calibration Method" and the "One-Point Calibration Method (Attitude)", a complete tool coordinate system is established, and the calibration is completed.

Tool Calibrate	Сору	Comments	Delete		Mode	automatic mode	×
Number:	1 ^						
	1	Cal	ibration Result				
a:	2		-9.382229561	15559			
b:	3		1.5625528181	185604			
c:	4		5.518197025	71345			
*]	5	o be in the same	direction as the TCP co	ordinate system	n, otherwis	e the calibration will fai	il.
Previous	6		Reteach				Confirm
Tevious	7		- totadoin				Committe

9.4.3 Use the tool coordinate system


9.4.3.1 Use the tool coordinate system when jogging.

When performing point-to-point movement of the robot at the end, you can choose to move along the tool coordinate system. Select the current tool as the target tool coordinate system to move along the tool coordinate system. The current tool can be switched in the Settings tab.

9.4.3.2 Tools used in the program

Add the "SetTool" instruction in the program tree and select the defined tool parameters from the drop-down menu.

Chapter 10 Instruction Introduction

10.1 Displacement Instructions

10.1.1 MovJ

This is joint movement. This instruction indicates that the robot's joints perform point-topoint motion, and the end trajectory of the robot is an irregular curve. Double-click the added MovJ instruction or select the parameters in the programming instruction details area and click MovJ to configure the instruction parameters.

		1. MovJ	
	Copy	Comments	Delete
Targ	rget Location :	P1	Ň
		APOS	
Spe	eed :	V100	~](
Acc	celeration :	ACC100	× (-
Trar	ansition Type :	FINE	Ň
Trar	ansition Value :	ZONE0	× A
Att	ttr Settings		
Des	sc :	input string	

Parameter	Description
Target position	Points that have been shown and taught can be selected in the
	Target Position option; only APOS and CPOS can be added.
Target speed	Set as a SPEED type variable, you can choose the system
	predefined value or create your own; where the target speed is a
	percentage.
Acceleration	See Variable Management for details on creating and setting
	variables of type SPEED.
Transition Type	Set the variable as ACC, you can choose the predefined value or
	create it by yourself;
Transition	See Variable Management for details on creating and setting
Value	variables of type ACC.

10.1.2 MovL

The MovL instruction is a linear motion command. By using this command, the TCP point

of the robot can move linearly to the target position at the set speed. If the starting and ending postures of the movement are different, the posture will rotate synchronously with the position to the ending posture during the movement. Compared with joint motion, linear movement may pass through singular points. Double-click the added MovL instruction or select the parameters in the programming instruction details area and click MovL to configure the instruction parameters.

P2		1. MovL	
	Copy	Comments	Delete
	Target Location :	P2	~
		APOS	\otimes \times
	Speed :	V100	~ (+
	Acceleration :	ACC100	× (+
	Transition Type :	FINE	×
	Attr Settings		~
	Desc :	input string	

Parameter	Description	
Target position	Points that have been shown and taught can be selected in the	
	Target Position option; only APOS and CPOS can be added.	
Target speed	Set as SPEED type variable, you can choose the system predefined	
	value or create it by yourself; in which, the target speed is an	
	absolute value, unit mm/s.	
Acceleration	The creation and setting of SPEED type variables are described in	
	the Variables section.	
Transition Type	The ACC variable can be predefined by the system or created by	
	yourself;	
Transition	See the Variable Management section for details on creating and	
Value	setting variables of type ACC.	

10.1.3 MovC

The completion of an arc instruction must involve three poses, and the positions of these three poses in space must not be on the same straight line. When using this instruction, the robot's TCP point moves in an arc from the starting position through the intermediate position to the target position. The starting position is the end point of the previous movement instruction. When using the MoveC instruction, if the starting and ending poses are different, the pose will rotate synchronously with the position during the movement to reach the ending pose, but it may not pass through the intermediate pose. Compared with joint movement, arc movement may pass through singular points. Double-click the added MoveC instruction or select the parameters in the programming instruction details area and click MoveC to configure the instruction parameters.

1 MovC P3 P4	1. MovC	
	Copy Comments Delete	
	Middle Point : P3 ~	
	Target Location : P4 ~	
	Speed : V100 ~ +	
	Acceleration : ACC100	
	Transition Type : FINE 🗸	
	Attr Settings 🗸 🗸	
	Desc : input string	

Parameter	Description
Intermediate	The position of the middle auxiliary point of the arc, the type can
position	only be APOS or CPOS.
Target position	The position of the end point of the arc, the type can only be
	APOS or CPOS.
Target speed	Set as SPEED variable, you can choose the system predefined
	value or create it by yourself; in which, the target speed is an
	absolute value, the unit is mm/s.
Acceleration	The creation and setting of SPEED type variables are described in
	the Variables section.
Transition Type	The ACC variable can be predefined by the system or created by
	yourself;
Transition	See the Variable Management section for details on creating and
Value	setting variables of type ACC.

10.1.4 MovCircle

The full circle instruction refers to the movement of the robot's TCP point from the starting position to the target position via an intermediate position, with the three positions in the pose space not being collinear. When using this instruction, the robot's TCP point performs a full circle movement from the starting position to the target position via the intermediate position, and the posture remains unchanged during the full circle movement. Compared with joint movement, the full circle movement may pass through singular points. Double-click the added MovCircle instruction or select the parameters in the programming instruction details area and click MoveCircle to configure the instruction parameters.

1 MovCircle P5 P6	1. MovCircle
	Copy Comments Delete
	Middle Point : P5 V
	Target Location : P6 ~
	APOS 🔊 🗙
	Speed : V100 - +
	Acceleration : ACC100 ~ +
	Transition Type : FINE V
	Attr Settings 🗸 🗸
	Desc : input string

Parameter	Description
Intermediate	The position of the middle auxiliary point of the arc, the type can
position	be APOS or CPOS.
Target position	The position of the end point of the arc, the type can be APOS or CPOS.
Target speed	Set as SPEED type variable, you can choose the system predefined
	value or create it by yourself; among them, the target speed is an
	absolute value, unit mm/s.
Acceleration	The creation and setting of SPEED type variables are described in
	the Variables section.
Transition Type	The ACC variable can be predefined by the system or created by
	yourself;
Transition	For details on the creation and setting of ACC type variables, see
Value	Variable Management.

10.1.5 MovJRel

MovJRel is an interpolation relative offset instruction. This instruction always takes the current robot position or the target position of the previous motion instruction as the starting position, and then the robot moves relatively by the specified offset.

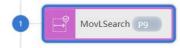
1 MovJRel P7	1. Mo Copy Comm	
	Target Location : P7	vos X
	Speed : V100	
	Acceleration : ACC	100 ~ +
	Transition Type : FINE	~
	Transition Value : ZON	E0 ~ +
	Attr Settings	~
	Desc : input	string

Parameter	Description	
Target Relative	The position increment that the robot is to move when executing	
Position	this command can only be added to DAPOS.	
Target speed	The setting is a variable of type SPEED, which can be either a	
	system predefined value or created by yourself; where the target	
	speed is a percentage.	
Acceleration	See the Variables section for details on creating and setting	
	variables of type SPEED.	
Transition Type	Set the variable to ACC, which can be predefined by the system or	
	created by yourself;	
Transition	See the Variable Management section for details on creating and	
Value	setting variables of type ACC.	

10.1.6 MovLRel

MovLRel interpolation relative offset instruction. This instruction always takes the current robot position or the target of the previous motion instruction as the reference.

The position is the starting position, and then the robot performs an offset movement relative to the coordinate system or the tool.


↔ MovLRel P8		1. MovLRel
	Сору	Comments
	Target Location :	P8
	Reference Coordinates :	Coord
	Speed :	V100 ~
	Acceleration :	ACC100 ~
	Transition Type :	FINE
	Attr Settings	
	Desc :	input string

Parameter	Description		
Target position	The position increment that the robot is to move when this		
	command is executed can only be added to the DCPOS.		
Reference	Coordinate system offset or tool offset selection;		
coordinates			
Target speed	- Coord: offset relative to the current user coordinate system;		
Acceleration	- Tool: offset relative to the tool coordinate system, i.e. reference		
	Tx, Ty, Tz translation or rotation.		
Transition type	Set as SPEED type variable, you can choose the system predefined		
	value or create it by yourself; among them, the target speed is the		
	absolute value, the unit is mm/s.		
Transition	The creation and setting of SPEED type variables are described in		
value	the Variables section.		

10.1.7 MovLSearch

F

The positioning command refers to performing IO detection or torque detection when executing this MovL command.

		1	. MovLSearch		
[c	.opy		Comments	Delete	
Target L	ocation	:	P9		~
			APOS		X
Speed		;	V100	~ -	Ð
Accelerat	tion	:	ACC100	~)-	Ð
Test	Гуре	:	DITrig		~
Search	Index	:	0		
Search	Value	:	0		
Stop	Time	:	0	1	ms
Result	Value	:	Please select	~)(-	Ð
Search	Pos	:	Please select		~

Parameter	Description
Target position	You can select the points that have been shown and taught in the
	target position option; only APOS and CPOS can be added,
	DAPOS and DCPOS are not selectable.
Target speed	Set as SPEED type variable, you can choose the system predefined
	value or create it by yourself; among them, the target speed is the
	absolute value, unit mm/s.
Acceleration	The creation and setting of SPEED type variables are described in
	the Variables section.
Detection Type	The ACC variable can be predefined by the system or created by
	yourself;
Trigger Index	For details on the creation and setting of ACC type variables, see
	the Variable Management.
Trigger Value	DITrig: Physical digital IO input detection.
Deceleration	AITrig: Physical analog IO input detection.
time	
Return Value	For InputTrig, this parameter indicates the IO port number to be
	detected.
Successful	For TorqTirg, this parameter indicates the axis number to be
position	detected.
Jump node	For InputTrig, the threshold for IO detection. For TorqTirg, the
	threshold for torque detection in thousandths of the rated torque.

10.1.8 AddDo

The AddDO instruction must be placed after motion instructions, including MovJ, MovL, MovC, MovCircle, MovJRel, and MovLRel. This instruction is mainly used to ensure that the transition between two motion instructions is not interrupted. If AddDO is added between two motion instructions, the IO operations in its sub-controls will not interrupt the transition; otherwise, the transition value of the previous motion instruction will not take effect. After the robot has executed this instruction, it can perform IO operations. The AddDO instruction must have sub-controls added, and the sub-controls can only be: SetDO, SetAO, SetSimDO, SetSimAO, SetDO8421, SetSimDO8421.

	2. AddDo	
2 AddDo	Copy Comments Delete	
3 SetDO = 1	Attr Settings	\sim
	Desc : input string	

10.1.9 MovTraj

Run the specified drag trajectory. Before running the trajectory, the robot must be at the starting point of the trajectory. You can use the GetTrajStartPoint instruction to obtain the starting point position and use the MovJ instruction to move to that point.

Parameter	Description
Trajectory	The track to be run.
Speed	The running speed multiplier to run the trajectory, based on the
multiplier	speed at the time of dragging and dropping.

To run a trajectory you can use the <u> </u>
trajectory editor. After clicking "Enable Trajectory Recording", press the button of Drag &
Drop in manual mode to start recording the robot's trajectory, release the button to stop
recording, and click the Save button to save the most recent drag & drop trajectory. After
selecting a trajectory, long press "Run to Start" to run to the starting point of the
trajectory, and long press "Run Trajectory" to run the trajectory.

10.2 Logical Instructions

10.2.1 GoTo

The GOTO instruction is used to jump to different parts of a program.

10.2.2 lf

The IF instruction is used for conditional judgment expression jump control, and the result of its judgment expression must be of type Bool. When the result of the conditional judgment expression is true, the program executes the content of the program block under the IF.

	1. If Copy Comments Delete
	Conditional expression
	Click on the node and edit the following form. \times
1	true 🕂 2
	Edit expression
3	Type : Value 🗸
	Data Type : Constant ~
	Constant Value : true

In the figure, 1 represents the overall expression, and you can add expressions by selecting the + sign in the 3 boxes within the frame. 2 is the expression currently being edited. The parameter editing of the expression is as follows:

Expression type	Description		
value	Includes constant values and variable values. Constant values		
	currently only support numeric quantities with true and false, while		
	variables can choose from the basic variables provided, and		
	currently include all IO signals.		
operator	Operators include logical operators with or without and various		
	math operators such as addition, subtraction, multiplication and		
	division.		
function	Provide commonly used math functions including sine, cosine,		
	integer, remainder and other functions.		

10.2.3 Elself

The ELSIF instruction depends on the IF instruction and follows immediately after the IF control. When the IF logic is not satisfied, the ELSIF logic is evaluated. The method of setting the ELSIF expression is the same as that of setting the IF expression.

1 If hang.value	3. Elself
2 MovL P1	Copy Comments Delete
3 Elself pos.value	Conditional expression V
4 ····· MovL P2	Click on the node and edit the following form. $aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
	pos.value
	Edit expression
	Type : Value 🗸
	Data Type : Variable 🗸 🗸
	Select Var : pos / value ~

10.2.4 Otherwise

The ELSE instruction depends on the IF or ELSIF instruction and follows immediately after the IF or ELSIF control. It is executed when the conditions of the IF or ELSIF instructions are not met. The ELSE instruction has no parameter configuration.

10.2.5 While

The WHILE instruction repeatedly executes the sub-statement when the condition is met. The loop control expression must be of the BOOL type.

The parameters of the expression are edited as follows:

	1. While	
2 MovC P4 P3	Copy Comments Delete	
3 SetTool	Conditional expression	\sim
4 MovL	Click on the node and edit the following form.	×
	hang.value	
	Edit expression	
	Type : Value	~
	Data Type : Variable	~
	Select Var : hang / value	~

Expression type	Description			
value	Includes constant values and variable values. Constant values			
	currently only support numeric quantities with true and false, while			
	variables can choose from the basic variables provided, and			
	currently include all IO signals.			
operator	Operators include logical operators with or without and various			
	math operators such as addition, subtraction, multiplication and			
	division.			
function	Provide commonly used math functions including sine, cosine,			
	integer, remainder and other functions.			

10.2.6... =...

Create an expression to assign a value to a certain variable. Currently, the assignment instruction supports assigning values to all IO and variables of INT, BOOL, and REAL types. Its configuration interface is as follows:

1= INTO.value=5	1=	
	Copy Comments Delete	
	Conditional expression	
	Click on the node and edit the following form. $ imes$	
	INT0.value = 5 🕀	
	Edit expression	
	Type : Value ~	
	Data Type : Constant \lor	
	Constant Value : 5	

10.2.7 RETURN

Return instruction. Generally, after executing this instruction, the program jumps to the end of the program. If the RETURN instruction is used in a subroutine called by the CALL instruction, it returns to the program one level above the CALL instruction. For example, if the RETURN instruction is used in a subroutine called by the main program, it will return to the main program.

10.2.8 CALL

The call instruction makes the current program jump to another subroutine within the same project. After the subroutine is executed, it jumps back to the current program. Clicking on the name of the current program will bring up a drop-down menu where you can switch the currently edited program.

subroutine2		1. CALL	
	Сору	Comments	Delete
	Bind		
	Task	: subroutine2	

10.2.9 RUN

The sub-task parallel running instruction enables the robot to run sub-tasks in parallel while performing the main task. The tasks to be run must be in the same project.

RUN sub3		1. RUN	
	Сору	Comments	Delete
	Bind		
	Task	: sub3	

10.2.10 KILL

The instruction to stop concurrently running programs (tasks) enables the robot to halt other programs while running the current one, and the programs to be stopped must be in the same project and in a running state.

10.2.11 Labeling

The Label instruction is used to define the target for GOTO jumps.

10.3 Flow Control Instructions

10.3.1 Wait

It is used to set the waiting time for the robot, with the time unit being milliseconds and it can be of the int constant type.

Wait 1000 ms		1. Wait	
	Сору	Comments	Delete
	Time	: 1000	ms
	Attr Settings		~
	Desc	: input string	

10.3.2 WaitFinish

It is used to synchronize the robot's movement and program execution. The robot will directly transition to execute the next instruction when the previous instruction reaches the trigger progress. When adding the WaitFinish instruction, sub-controls must be added. Sub-controls can be SetDO or SetAO and their similar instructions. As shown in the example program, the SetDO instruction will be triggered when the first MovL instruction reaches 20% of its execution. After the first MovL instruction is completed, it will directly transition to execute the second MovL instruction. If the WaitFinish instruction is deleted, the SetDO will be executed after the first MovL instruction is completed, and then the second MovL instruction will be executed. In this case, there is no transition between the two MovL instructions, and there will be a pause.

1 🛞 Wa	aitFinish			1	I. WaitFinish		
			Copy		Comments	Delete	
		Trigg	ger Progress	5:	100		%
		Attr	Settings				\sim
		Desc	8	:	input string		
Parameter	Description						
Trigger progress	Percentage of runtime when the p	oreviou	s move	ins	truction tr	riggers a	child
	control in WaitFinish.						

10.3.3 WaitCondition

Set the conditions for the robot to wait. If the conditions are not met within the set time, a timeout status will be returned. The next instruction will be executed only when the "discrimination condition" is true; otherwise, the program will continue to wait until the expression is true.

	2. WaitCondition
2 WaitCondition true 1000 ms Label 9	Copy Comments Delete
3	Time : 1000 ms
4 → MovL p2	Interrupt : Reset Timer ~
5 Label contine	Timeout : hang \checkmark 🖉 +
	Bind 🗸
	jump node : Label \checkmark
	Conditional expression 🗸
	Click on the node and edit the following $$\times$$ form.
	true 🕀
	Edit expression
	Type : Value ~

Parameter	Description
Time	The amount of time, in ms, required to execute the wait.
Timeout value	If the value of this parameter is 0, it will force the system to wait
	until the discriminant condition is true before continuing to execute
	the next instruction.
Jump Node	If the value of this parameter is non-zero, the system will skip the
	instruction and continue to execute the next instruction after
	waiting for the given amount of time, even if the discriminating
	condition is still not true.
Conditional	Select a variable and assign a value to it under the following two
expression	conditions.

10.4 IO Instructions

10.4.1 SetDO

Set the digital output ports to the TRUE (1) or FALSE (0) state. Here, DO0-DO15 represent the 16 digital output ports of the control cabinet, DI0-DI15 represent the 16 input ports of the control cabinet, and switch0-switch3 indicate the status of the buttons at the robot's end effector.

1 Se	1. SetDO
	Copy Comments Delete
	Port : DO0 ~
	Set Value : 1 ~
Parameter	Description
Port	Sets the port number of the digital output DO.
Setting value	Sets the port value, with 0 indicating a high level and 1 indicating

10.4.2 SetAO

a low level.

Set the analog output ports (AO0-AO3) to a certain value within the range of 4mA to 20mA.

1 SetAO AO0 = 4					1. SetAO	
	_		Copy		Comments	Delete
		Port		:	AOO	~

	Parameter	Description
Port Sets the port number of the digital output AO.		Sets the port number of the digital output AO.
	Setting value	Set port value, only current is supported, range 4mA-20mA

10.4.3 WaitDI

This instruction is used to wait for the status of a digital input (DI) port for a specified duration. If the waiting condition is met within the set duration, the program continues to execute downward; if the condition is not met within the set duration, the timeout judgment value is set to 1 and the program jumps to the jump node.

1 - 🧞 WaitDI 1000 ms Label 2			1. WaitDI	
2 Label wait	Сору		Comments	Delete
	Port	:	DIO	~
	Port Value	:	High Level	~
	Time	÷	1000	ms
	Interrupt	:	Reset Timer	~
	Timeout	:	hang	~ Z+
	Bind			\sim
	jump node	:	Label	~

Parameter	Description
Port Variables	Input port number to wait for.
Port Value	Digital input port level to wait for.
Duration (ms)	The unit of time to wait for the signal to change is ms.
Timeout value	Return the result of instruction execution to the variable set in the timeout value, the timeout value variable can only be INT type variable.
Jump node	When a signal is successfully waited for within the waiting time, the running value of the timeout value will be set to 0;

10.4.4 WaitDI8421

This instruction is used to wait for a combination of states of a group of consecutive digital input (DI) ports within a specified duration. If the waiting condition is met within the set duration, the program continues to execute downward; if the condition is not met within the set duration, the timeout judgment value becomes 1, and the program jumps to the jump node.

1 - 🐜 WaitDI8421 1000 ms Label 2	1. WaitDI8421
2 Label wait	Copy Comments Delete
	Start Port : Please select ~
	End Port : Please select ~
	Time : 1000 ms
	Interrupt : Reset Timer ~
	8421 Value : 0
	Timeout : hang v 🖉 +
	Bind
	jump node : Label \lor

Parameter	Description			
Starting Port	Starting port number of the continuous DI port for the segment,			
	indicating the low bit of the 8421 conversion value			
End Port	End port number of the continuous DI port for the segment.			
	Indicates the high bit of the 8421 conversion value			
Time(ms)	The length of time to wait for the DI signal of this group of digital			
	inputs, which can be of int constant type in ms.			
8421 Value	Convert the value of this segment of consecutive DI ports to a			
	decimal number according to the 8421 rule, and the condition is			
	considered satisfied if it is equal to the VALUE value.			
Timeout value	For example, if the start port is 0 and the end port is 2, and the			
	8421 value is set to 4, the condition is said to be satisfied when DIO			
	is 0, DI1 is 0, and DI2 is 1.			
Jump Node	The result of the instruction execution is returned to the variable set			
	in the timeout value, and the timeout value variable can only be an			
	INT type variable.			

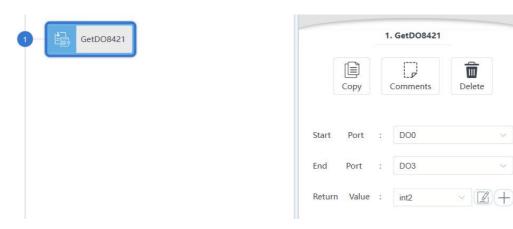
10.4.5 WaitAl

This instruction is used to wait for the status of an analog input (AI) port for a specified duration. If the waiting condition is met within the set duration, the program continues to execute downward; if the condition is not met within the set duration, the timeout judgment value is set to 1 and the program jumps to the jump node.

1 - 🧞 WaitAl 1000 ms Label 2			1. WaitAl
2 Label wait	Copy		Comments Delete
	Port	:	Please select 🔗
	Set Value	:	4
	Time	:	1000 ms
	Interrupt	:	Reset Timer v
	Timeout	:	hang v 🛃 🕂
	Bind		~
	jump node	:	Label

Parameter	Description
Port Variables	The analog input port number to be waited for.
Port Value	The analog input port current value (4mA-20mA) to wait for.
Duration (ms)	The unit of time to wait for signal conversion is ms.
Timeout value	Returns the result of command execution to the variable set in the
	timeout value, which can be an INT type variable only.
Jump node	When a signal is successfully waited for within the waiting time, the
	running value of the timeout value will be set to 0;

10.4.6 GetDI8421


This command is used to obtain the status of a continuous section of DI ports (treated as binary data) and return it as a decimal number.

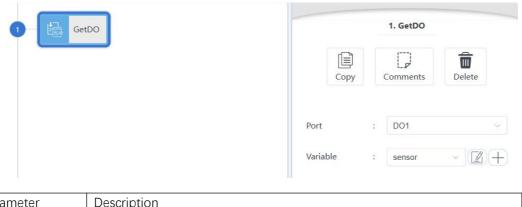
Parameter	Description
Starting Port	Start DI port number you want to acquire, the lowest bit of the
	8421 value.
End Port	The end DI port number you want to get, the highest bit of the
	8421 value.
Return Value	INT type variable, the program runtime will get the port status in
	binary to decimal conversion and then pass into the int variable.

10.4.7 GetDO8421

This command is used to obtain the status of a continuous section of DI ports (treated as binary data) and return it as a decimal number.

Parameter	Description
Starting Port	Start DO port number you want to acquire, the lowest bit of the
	8421 value.
End Port	The end DO port number you want to get, the highest bit of the
	8421 value.
Return Value	INT type variable, the program runtime will get the port status in
	binary to decimal conversion and then pass into the int variable.

10.4.8 SetDO8421


Set a continuous DO port status (regard it as a binary data segment), and convert the input decimal number into a binary number to set it on the specified DO port.

ि Se	tDO8421 ~ = 1			1	. SetDO8421		
			Copy		Comments	Delete	
		Start	Port	1	DO0		~
		End	Port	:	DO2		~
		Set	Value	;	1		

Parameter	Description
Starting Port	The low bit when the desired value is transmitted in binary.
End Port	The high bit when the desired setting value is transmitted in
	binary.
Return Value	The decimal setting value of the desired port output.

10.4.9 GetDO

This command is used to obtain the status of the DO port and return it as a binary number.

Parameter	Description
Port	The DO port from which you want to get the value.
Variable	The binary value that you want the port to output.

10.4.10 GetDI

This command is used to obtain the status of the DI port and return it as a binary number.

GetDI			1. GetDI	
	Сору		Comments	Delete
	Port	:	DI2	×
	Variable	¢	sensor	- Z +

Parameter	Description
Port	The DI port from which you want to get the value.
Variable	The binary value that you want the port to output.

10.4.11 GetAO

This command is used to obtain the status of the AO port and return it as a decimal fraction.

Parameter	Description
Port	The AO port that needs to get the value.
Variable	Decimal decimal value of the desired port output.

10.4.12 GetAl

This command is used to obtain the status of the AI port and return it as a decimal fraction.

Parameter	Description
Port	The AI port that needs to get the value.
Variable	The binary value that you want the port to output.

10.5 Set instructions

10.5.1 SetTool

Set the tool parameter command. Switch to this tool parameter.

1 - Cir Set	Tool 1. SetTool
	Copy Comments Delete
	Tool : 0 ~
Parameter	Description
Tool param	Change to the selected tool number.

10.5.2 SetCoord

Set the user coordinate system command. Switch to this user coordinate system.

Parameter	Description
Coordinate	Changed to select the variable number of the coordinate system that has
system	been created for the selection.

10.5.3 SetPayload

Select the workpiece load parameter instruction. Switch to this workpiece load parameter.

1 - ट्रिंट्रे SetPayload	yload 1. SetPayload
	Copy Comments Delete
	Payload : 3 ~
Parameter	Description
Workpiece Load	Change to Select to select the load variable number that has been

10.5.4 Stop

This command is used to stop the execution of all active programs.

10.5.5 EnaVibraSuppr

created.

This command is used to enable vibration suppression.

10.5.6 DisVibraSuppr

This command is used to disable the servo vibration suppression.

10.5.7 ClsDectLevel

This command is used to set the sensitivity of collision detection.

10.6.1 GetCurAPos

This instruction is used to obtain the current position in the joint coordinate system and assign it to an Apos type variable. You can click on +APOS to add an Apos type variable.

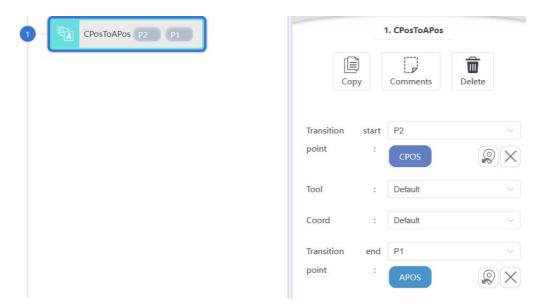
1 A Ge	tCurAPos P1		8	1. GetCurAPos		
		Сору		Comments	Delete	
		Storage Locatio	on:	P1		\sim
				APOS		
1						
Parameter	Description					
Storage location	Current Apos value variable.					

10.6.2 GetCurCPos

This command is used to obtain the Cartesian space position in the current reference coordinate system and assign it to a variable of type Cpos. You can click +CPOS to add a variable of type APos.

1 G Get	tCurCPos P2			1. GetCurCPos	
			opy	Comments	Delete
		Storage Lo	cation :	P2	~
				CPOS	
Parameter	Description				
Storage location	Current Cpos value variable.				

10.6.3 APosToCPos


The robot position point conversion instruction, given the APos point under the base coordinate system, and the reference coordinate system and tool parameters of the target CPos point to be converted, can get the value of the CPos point with tool parameters under the target coordinate system.

P1 P3			I. APosToCPos	
	Copy		Comments	Delete
Trans	ition	start	P1	~
point		:	APOS	$\mathbb{Q} \times$
Tool		:	0	~
Coord	Н	:	Default	~
Transi	ition	end	P3	~
point		:	CPOS	() ×

Parameter	Description
Pre-conversion	Apos variable before conversion
point	
Points after	Cpos variable after conversion
conversion	
Tool	Tool number involved in the conversion
parameters	
Coordinate	Coordinate system number involved in the conversion
system	

10.6.4 CPosToAPos

The robot position point conversion instruction, given the CPos point and the reference coordinate system and tool parameters it belongs to, can obtain the value of the target APos point.

Parameter	Description
Conversion front point	Cpos variables before conversion
Tool parameters	Tool number involved in the conversion
Coordinate system	Coordinate system number involved in the conversion

10.6.5 CPosToCPos

The robot position point conversion instruction, given the CPos point and its reference coordinate system and tool parameters, as well as the reference coordinate system and tool parameters of the target CPos point to be converted, can obtain the value of the target CPos point.

CPosToCPos P4 P5	1. CPosToCPos	
	Copy Comments Delete	
	Transition start P4 ~	
	point : CPOS	
	Front Tool : Default ~	
	Front Coord : 1	
	Transition end P5 V	
	point : CPOS	
	After Tool : Default \lor	
	After Coord : Default ~	

Parameter	Description
Convert Pre-	Cpos variables before conversion
Points	
Target tool	Tool number involved in Cpos before conversion
parameters	
Target user	Coordinate system number of Cpos before conversion
coordinate	
system	
Post-	Apos variable after conversion
transformation	
point	
Baseline tool	Tool number of Cpos after conversion
parameters	
User	Coordinate system number of Cpos after conversion.
coordinate	
system	

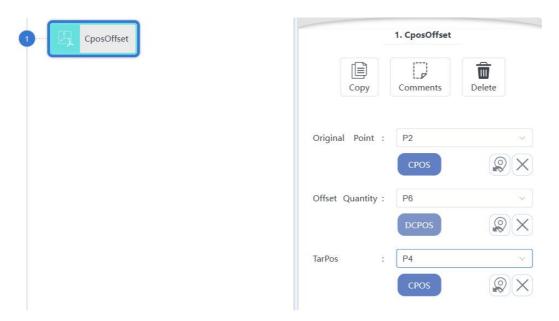
10.6.6 ToolOffset

The robot tool coordinate system offset instruction allows for the generation of a new tool coordinate system by rotating or offsetting the reference tool coordinate system. Given the reference tool coordinate system TOOL and the offset or rotation amount required, the value of the target tool coordinate system can be obtained.

ToolOffset P6		1. ToolOffset	
	Сору	Comments	Delete
	Tool :	1	\sim
	Offset Quantity :	P6	~
		DCPOS	
	Tool Param :	4	

Parameter	Description
Tool	Tool TCP parameter before offset
Parameters	
Offset	Offset DCpos parameters
Tool	Tool TCP parameters after offset
Parameters	

10.6.7 UserOffset


The robot user coordinate system offset instruction allows for the generation of a new user coordinate system by rotating or offsetting the reference user coordinate system. Given the reference user coordinate system USERCOORD and the offset or rotation amount required, the value of the target user coordinate system can be obtained.

UserOffset P6		1. UserOffset	
	Сору	Comments	Delete
	Coord :	2	
	Offset Quantity :	P6	
		DCPOS	
	Target Usercoord :	1	

Parameter	Description
Coordinate	Coordinate system parameters before offset
system	
Offset	Offset DCpos parameter
Coordinate	Coordinate system parameter after offset
system	

10.6.8 CposOffset

The robot Cpos offset command allows for the generation of a target Cpos by rotating or offsetting the original Cpos.

Parameter	Description
Coordinate system	Cpos parameter before offset
Offset	Offset DCpos parameter
Coordinate system	Cpos parameter after offset

10.6.9 GetAxis

This command is used to obtain the angle of the specified axis.

1 GetAxis		1. GetAxis				
		Сору	Comments	Delete		
		Original Point :	P1	×		
		Axis :	APOS Axis1	~		
		Angle Value :	anglo	~ Z+		
Parameter	Description					
Origin	Selected Apos					
Δνίς	Selected axis number	~				

AxisSelected axis numberAngular valueAngular value

10.6.10 GetCartesian

This command is used to obtain the specified Cartesian pose values.

1 Get	Cartesian		1	1. GetCartesian	
		Сору		Comments	Delete
		Point	:	P2 CPOS	×
		Coordinate Direction	Or :	x	~
		Store Value	:	anglo	~ Z +
Parameter	Description				
Origin	Selected Cpos				
Axis	Selected direction or angle				
Stored value	Value				

10.6.11 Position Inverse

This instruction is used to calculate the inverse of the pose transformation.

Parameter	Description
Origin	Position inversion to original position
Stored point	Position inversion to resultant position

10.6.12 PointsDistance

This instruction is used to calculate the distance between two pose points.

PointsDistance			1. PointsDistance	
		Copy	Comments	Delete
	Start	Point :	P2 CPOS	×
	End	Point :	P3 CPOS	
	Distan	ce(mm) :	result	~ C +

Parameter	Description
Origin	Starting Position
Stored point	End Position
Distance	Distance between two attitude points

10.6.13 InterpolationCpos

This instruction is used to calculate the pose interpolation between the start point and the end point.

1 InterpolationCpos		1	. InterpolationCp	05
		Copy	Comments	Delete
	Start	Point :		~
	End	Point :	CPOS P2	×
	Coeffi	cient :	CPOS 0.5	
	Storag	je Point :	P5	~
			CPOS	\otimes \times

Parameter	Description
Beginning	Starting Position
point	
End point	End position
Coefficient	Interpolation factor, interval 0~1, 0 is the starting point, 1 is the
Stored point	
-	

10.6.14 TransformPlane

This instruction performs a transformation in the XY(YZZX) plane. At the base point, it first

rotates around the Z(XY) axis, then translates along the X(YIZ) axis, and finally along the Y(ZIX) axis. Position variables, array variables, or taught points can be dragged into the base point, and the storage point is the pose after the transformation.

ane	TransformPlan	1.
Delete	Comments	Сору
~ OX	P2 CPOS	Original Point :
~	yz	Plane :
\$ °	0	Rotation Angle :
mm	0	Y direction :
mm	0	Z direction :
~	P2	Storage Point :
$\mathbb{Q} \times$	CPOS	

Parameter	Description
Primitive point	primitive point
Plane	The plane in the point's coordinate system
Angle of	Rotation angle along the selected plane
rotation	
Translation in	Translation distance in both directions of the selected plane
the	
direction	
Stored Points	Resulting point variable

10.6.15 GetTrajStartPoint

This instruction is used to obtain the starting point of the drag trajectory.

			and the second		
0-2	GetTrajStartPoint	1. GetTrajStartPoint			
			Сору	Comments	Delete
		Trajec	tory :	trj	~ Z+
		Start	Point :	P1	~
				APOS	$\mathbb{Q} \times$
Parameter	Description				
Trajectory	Selected trajectory				

starting point

Point storage

10.6.16 GetTrajEndPoint

This instruction is used to obtain the end point of the drag trajectory.

GetTrajEndPoint		1. GetTrajEndPoi	nt
	Сору	Comments	Delete
	Trajectory :	trj	~ Z+
	End Point :	P7	~
		APOS	ØX

Parameter	Description
Trajectory	Selected trajectory
End point	Point storage

10.7 Bitwise Operation Instructions

INT variable

10.7.1 BitAnd

This instruction performs a bitwise AND operation on two operands and assigns the result to the first operand.

1	BitAnd op1, op2			1. BitAnd	
			Сору	Comments	Delete
		Operand	1 :	op1	~ Z+
		Operand	2 :	op2	~ Z+
Parameter	Description				
Operand 1	INT variable; the resu	It of the operatio	n is als	so assigne	d to this
	operand				

10.7.2 BitNeg

Operand 2

Implement the bitwise NOT operation. This instruction performs a bitwise NOT operation on the operand and assigns the result back to the operand.

1 BitN	tNeg op1	BitNeg
		aments Delete
	Operand : op1	· · · · · · · · · · · · · · · · · · ·
Parameter	Description	
Operand 1	INT variable; the result of the operation is also ass operand	igned to this

10.7.3 BitOr

Implements the operation of bitwise or. This instruction performs a bitwise or operation on two operands and assigns the result to the first operand.

				_		
1 BitC	pr op1 , op2				1. BitOr	
			Copy		Comments	Delete
		Operar	nd1	:	op1	~ Z+
		Operar	nd2	:	op2	~ Z+
Parameter	Description					
Operand 1	INT variable; the result of the operand	operat	ion is a	als	so assigne	d to this

10.7.4 BitLSH

INT variable

Operand 2

This instruction performs a bitwise left shift operation. The first operand is shifted left by the number of bits specified by the second operand, and the result is assigned back to the first operand.

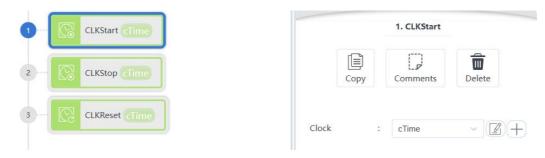
, op2		1. BitLSH	
	Сору	Comments	Delete
	Operand1	: op1	~ [.
	Operand2	: op2	

Parameter	Description
Operand 1	INT variable; the result of the operation is also assigned to this
	operand
Operand 2	INT variable

10.7.5 BitRSH

Implement the bitwise right shift operation. This instruction performs a bitwise right shift on the first operand by the number of bits specified by the second operand and assigns the result back to the first operand.

1 BitRSH op1 , op2			1. BitRSH	
		Сору	Comments	Delete
	Operand1	1 :	op1	~ 2+
	Operand2	2 :	op2	<u> </u>
Description				


Parameter	Description
Operand 1	INT variable; the result of the operation is also assigned to this
	operand
Operand 2	INT variable

10.8 Clock Instruction

When using clock instructions, a variable of type CLOCK needs to be created.

10.8.1 CLKStart

Start the specified clock (After starting, you can see from the variable list that the state of the specified clock variable is true and the value is the recorded time).

10.8.2 CLKStop

Stop the specified clock (its state is false, but it will not be reset).

	2. CLKStop	
Сору	Comments	Delete
	: cTime	~ []

10.8.3 CLKReset

Reset the state value of the specified clock.

10.9 Socket Command

10.9.1 SocketCreate

Create a socket client to facilitate data interaction with the server. Based on the parameters passed from the server side, create a client locally and establish a connection with the server.

1 SocketCreate	1. SocketCreate
2 SocketSendStr	Copy Comments Delete
3 SocketClose	Socket Name : Socket0 ~ +
	IP Address : 192.168.1.1
	Port : 8080
	Return Value : State ~

Parameter	Description
Socket Name	The name of the socket to be created, this value is passed as a
	socket variable.
IP address	The ip address of the server to connect to
Port number	The port number of the server to connect to.
Return Value	The return value variable for whether the operation was successful,
	a value of 0 indicates success, a value of 1 indicates failure. If the
	socket has already been created, it returns 1. This operation does
	not indicate whether communication is established.

Close the previously created socket client. Based on the passed-in socket name, close the created client and return the success or failure of the operation.

1 😝 so	cketCreate			3. SocketClose	
2 🙀 So	cketSendStr		Copy	Comments	Delete
3- 🕅 So	cketClose	Socket	Name :	Socket0	× +
		Return	Value :	State	× 2 +
arameter	Description				

Parameter	Description
Socket Name	The name of the socket to be closed, this value is passed in as a
	socket variable.
Return Value	A value of 0 indicates success, while a value of 1 indicates failure.

10.9.3 SocketSendStr

Send a string to the server side for command interaction. Send a string to the already established server connection and return whether it is successful or not.

1 SocketCreate	2. SocketSendStr	
2 SocketSendStr	Copy Comments Delete	
3 😥 SocketClose	Socket Name : Socket0 v +	
	Send : sData ~ 🖉 +	
	Return Value : State	
	Separate Ending :	

Parameter	Description
Socket Name	The name of the socket on which the send operation is to be
	performed, passed as a socket variable.
Send	The string of data to be sent to the server.
Return Value	The return value of whether the operation is successful or not, a
	return value of 0 means success, a return value of 1 means failure.
End of newline	Whether to add "\n" line breaks.

10.9.4 SocketSendReal

Send the real array to the server side for command interaction. Send the real array to the already established server connection and return whether it is successful or not. The starting and ending characters of the sent string can be customized, and the data is

separated by a delimiter.

1 SocketCreate	2. SocketSendReal	
2 SocketSendReal	Copy Comments Delete	
3 - SocketClose	Socket Name : Socket0 ~ +	
	Send : sreal ~	
	Return Value : State ~	
	Start String : [
	End String :]	
	Separate : ,	
	Separate Ending :	

Parameter	Description
Socket Name	The name of the socket on which the send operation should be
	performed, this value is passed as a socket variable.
Send	The real array of data to be sent to the server.
Return Value	The return value of whether the operation is successful or not, a
	value of 0 means success, a value of 1 means failure.
Start String	Start String
End String	End string
Separator	Separator between data
End of line	Whether to add "\n" line breaks.
break	

10.9.5 SocketSendInt

Send an int array to the server side for command interaction. Send an int array to the already established server connection and return whether it is successful or not.

Copy Comments Delete
Socket Name : Socket0 ~ +
Send : arr1 ~ 2 +
Return Value : State - 2 +
Start String : [
End String :]
Separate : ,
Separate Ending :
_

Socket Name	The name of the socket on which the send operation should be
	performed, this value is passed as a socket variable.
Send	The int array of data to be sent to the server.
Return Value	The return value of whether the operation is successful or not, a
	value of 0 means success, a value of 1 means failure.
Start String	Start String
End String	End string
Separator	Separator between data
End of line	Whether to add "\n" line breaks.
break	

10.9.6 SocketReadReal

Read the string sent from the server and store it in the form of a real array. Wait and receive the string sent from the server, which is in the format of start and end strings, with data separated by delimiters. After receiving the string, the robot system will split and parse it and store it in the array in sequence.

1 SocketCreate	2. SocketReadReal
2 SocketReadReal	Copy Comments Delete
3 - SocketClose	Socket Name : Socket0 ~ +
	Data Number : 0
	Data Valuie : sreal \checkmark 🖉 +
	Test Time : 2000 ms
	Return Value : State V
	Start String : [
	End String :]
	Separate : ,

Parameter	Description
Socket name	The name of the socket on which the read operation is to be
	performed, passed as a socket variable.
Number of	The number of sockets to read into the array.
data	
Data return	Stores the read and converted values into the array variable and
value	returns the array variable.
Detection time	Waiting time for the server to send the data. Timeout alarm.
Return Value	The return value of whether the operation is successful or not, a
	return value of 0 means success, and a return value of 1 means
	failure.
Start String	Start String
End String	End string
Separator	Separator between data.

10.9.7 SocketReadInt

Read the string sent from the server and store it in the form of an int array. Wait and receive the string sent from the server, which is in the format of start and end strings, with data separated by delimiters. After receiving the string, the robot system will split and parse it and store it in the array in sequence.

1 Socket	Create	2. SocketReadInt
2 E Socket	ReadInt	Copy Comments Delete
3 - 🕅 Socket	Close	Socket Name : Socket0 ~ +
		Data Number : 0
		Data Valuie : arr1 V
		Test Time : 2000 ms
		Return Value : State ~
		Start String : [
		End String :]
		Separate :
Parameter	Description	
Socket name		et on which the read operation is to be
	performed, passed as	a socket variable.

Socket name	The name of the socket on which the read operation is to be
	performed, passed as a socket variable.
Number of	The number of sockets to read into the array.
data	
Data return	Stores the read and converted values into the array variable and
value	returns the array variable.
Detection time	Waiting time for the server to send the data. Timeout alarm.
Return Value	The return value of whether the operation is successful or not, a
	return value of 0 means success, and a return value of 1 means
	failure.
Start String	Start String
End String	End string
Separator	Separator between data.

10.9.8 SocketReadStr

Read the string sent from the server and store it in the form of a string. Wait and receive the string sent from the server, which is in the format of start and end strings and string data. After receiving the string, the robot system will split and parse it and store it in character variables.

1 SocketCreate	2. SocketReadStr
2 SocketReadStr	Copy Comments Delete
3 SocketClose	Socket Name : Socket0 ~ +
	Data Valuie : sData - 🖉 🕂
	Test Time : 2000 ms
	Return Value : State ~
	Start String : [
	End String :]

Parameter	Description
Socket Name	The name of the socket on which the read operation should be
	performed, passed as a socket variable.
Data return	The string data sent from the server, the value is returned as a
value	string variable.
Detection time	Waiting time for the server to send the data. Timeout alarm.
Return Value	The return value of whether the operation is successful or not, a
	value of 0 means success, a value of 1 means failure.
Start String	Start String
End String	End String

10.10 Interrupt Instruction

10.10.1 IConnect

This instruction is used to create an interrupt identifier and connect an interrupt task.

1 📝 ICo	nnect macro3			1. IConnect	
2 - 🔀 ITin	ner	Сору		Comments	Delete
3 ICo	ndition	Interrupt	:	ipt	× Z+
4 🐼 IDe	lete	Bind			\sim
		Task	;	macro3	~
Parameter	Description				

ParameterDescriptionInterrupt IDID nameTasksTask called

10.10.2 IDelete

This command is used to disconnect the interrupt name from the interrupt task.

1	IConnect macro3		4. IDelete		
2 🖳	ITimer	Сору		Comments	Delete
3-	ICondition	Interrupt	:	ipt	~ 2+
4	IDelete	Attr Settings			~
		Desc	:	input string	
Parameter	Description				

Parameter	Description
Interrupt ID	ID name
Tasks	Task called

10.10.3 ITimer

This instruction is used to trigger an interrupt at a specified time.

1 📝 ICon	nect macro3			2.	. ITimer	
2 ITime	er		Copy	Co	mments	Delete
3 R ICon	dition	Interrup	ot	: [i	pt	~ Z +
4 IDele	te	Trigger	Time	:	300	ms
Parameter	Description					
Interrupt ID	ID name					
Tasks	Interval trigger time					

10.10.4 ICondition

This instruction is used to execute an interrupt when the conditions are met.

1	nect macro3		3. ICondition
2 🕅 ITim	er	Сору	Comments
3 R ICon	dition	Interrupt	: ipt ~ 🖉 🕂
4 IDele	ete	Conditional expr	ession 🗸
		Click on the noo form.	de and edit the following $ imes$
		State.value	\oplus
		Edit expression	
		Туре	: Value 🗸
		Data Type	: Variable ~
		Select Var	: State / value 🗸
Parameter	Description		
	Description		
Interrupt ID	ID name		
conditional	When the expression sa	tisfies the condition, a	n interrupt will be
expression	executed		

10.11 Modbus Commands

10.11.1 GetModConState

This command is used to obtain the connection status of the robot's communication with the outside world via ModbusTCP.

Parameter	Description
Device name	Name of the Modbus device to be operated
Connection	Returns the current connection status, type BOOL
Status	

10.11.2 ReadSingleCoilReg

This command is used to read a single coil register of the specified Modbus.

1 ReadSingleCoilReg	1. ReadSingleCoilReg
	Copy Comments Delete
	Device Name : MODBUS_mb ~
	Register ID : 0
	Register Value : regb \vee 🖉 +
	Device Address : 1
	Timeout time : 3000 ms
	Return Value : State ~

Parameter	Description
Device name	Modbus device name to be operated
Address	Address of the register to be read
Destination	Variable holding the value of the register to be read, type BOOL
register value	
Slave Device	Address of slave device
Address	
Timeout	Waiting time for reading, timeout alarm
Return Value	Return value variable of whether the operation is successful or not,
	a return value of 0 means success, and a return value of 1 means
	failure.

10.11.3 ReadDiscreteInputReg

This command is used to read the specified discrete input registers of Modbus.

ReadDiscreteInputReg	1. ReadDiscreteInputReg
	Copy Comments Delete
	Device Name : MODBUS_mb ~
	Register ID : 0
	Register Value : regb \checkmark
	Device Address : 1
	Timeout time : 3000 ms
	Return Value : State V

Parameter	Description
Device name	Modbus device name to be operated
Address	Address of the register to be read
Destination	Variable holding the value of the register to be read, type Int
register value	
Slave Device	Address of slave device

Address	
Timeout	Waiting time for reading, timeout alarm
Return Value	Return value variable of whether the operation is successful or not,
	a return value of 0 means success, and a return value of 1 means
	failure.

10.11.4 ReadSingleHoldReg

This command is used to read a single holding register of the specified Modbus.

ReadSingleHoldReg	1. ReadSingleHoldReg
	Copy Comments
	Device Name : MODBUS_mb ~
	Register ID : 0
	Register Value : int1 ~
	Device Address : 1
	Timeout time : 3000 ms
	Return Value : State V

Parameter	Description
Device name	Modbus device name to be operated
Address	Address of the register to be read
Destination	Variable holding the value of the register to be read, type Int
register value	
Slave Device	Address of slave device
Address	
Timeout	Waiting time for reading, timeout alarm
Return Value	Return value variable of whether the operation is successful or not,
	a return value of 0 means success, and a return value of 1 means
	failure.

10.11.5 ReadInputReg

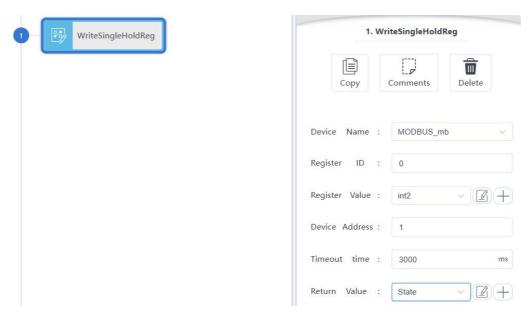
This command is used to read the specified Modbus input registers.

ReadInputReg	1. ReadInputReg	
	Copy Comments Delete	
	Device Name : MODBUS_mb ~	
	Register ID : 0	
	Register Value : int1 V	
	Device Address : 1	
	Timeout time : 3000 ms	
	Return Value : State - V	

Parameter	Description
Device name	Modbus device name to be operated
Address	Address of the register to be read
Destination	Variable holding the value of the register to be read, type Int
register value	
Slave Device	Address of slave device
Address	
Timeout	Waiting time for reading, timeout alarm
Return Value	Return value variable of whether the operation is successful or not,
	a return value of 0 means success, and a return value of 1 means
	failure.

10.11.6 WriteSingleCoilReg

This command is used to write to a single coil register of the specified Modbus.


WriteSingleCoilReg	1. \	WriteSingleCoil	Reg
5	Сору	Comments	Delete
	Device Name :	MODBUS_m	b v
	Register ID :	0	
	Register Value :	regb	× Z+
	Device Address :	1	
	Timeout time :	3000	ms
	Return Value :	State	~ Z +

Parameter	Description
Device name	Modbus device name to be operated
Address	Address of the register to be written
Destination	Variable holding the value of the register to be written, type BOOL
register value	

Slave Device	Address of slave device	
Address		
Timeout	Waiting time for reading, timeout alarm	
Return Value	Return value variable of whether the operation is successful or not,	
	a return value of 0 means success, and a return value of 1 means	
	failure.	

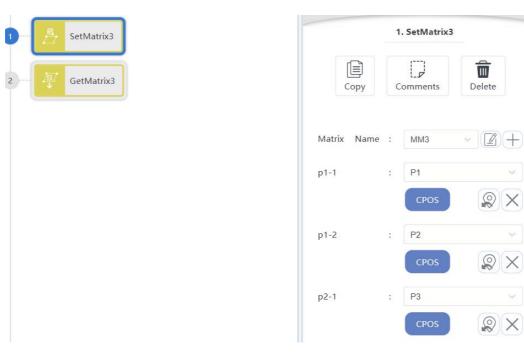
10.11.7 WriteSingleHoldReg

This instruction is used to write to a single holding register of the specified Modbus.

Parameter	Description
Device name	Modbus device name to be operated
Address	Address of the register to be written
Destination	Variable holding the value of the register to be written, type Int
register value	
Slave Device	Address of slave device
Address	
Timeout	Waiting time for reading, timeout alarm
Return Value	Return value variable of whether the operation is successful or not,
	a return value of 0 means success, and a return value of 1 means
	failure.

10.12 Array Instructions

10.12.1 SetMatrix2

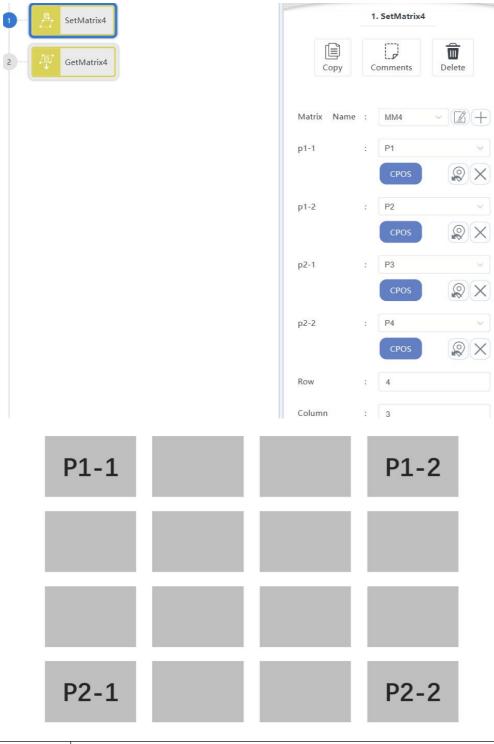

To form a linear array in space by specifying two points, and then evenly divide this linear array according to the set number of rows to obtain a matrix point group.


1 SetMatrix2	1. SetMatrix2
	Matrix Name : MM2 > 2 +
	p1 : P1 ~ (P0)
	p2 : P2 ~
	CPOS 🔊 🗙
P1-1	P1-2

Parameter	Description
Matrix Name	Name of the Matrix to be manipulated
p1	Specifies the first point of the linear array, type CPOS.
p2	Specifies the last point of the linear array, type CPOS.
Number of	Number of rows of the generated array, type INT
Pieces	

10.12.2 SetMatrix3

To form a parallelogram array in space by specifying three points, and then divide this parallelogram into equal parts according to the set number of rows and columns to obtain a matrix of points.



Parameter	Description
Matrix Name	Name of the Matrix to be manipulated
p1-1	Specifies the first point in the first row of the parallelogram, also
	called the origin, of type CPOS.
p1-2	Specify the last point of the first row of the parallelogram, type
	CPOS
p2-1	Specifies the first point of the last row of the parallelogram, of type
	CPOS
Number of	Generates the number of rows of the array, type INT
rows	
Columns	Generates the number of columns of the array, type INT

10.12.3 SetMatrix4

To form a parallelogram array in space by specifying four points, and then equally divide this parallelogram into a matrix point group according to the set number of rows and columns. Compared with the Matrix3 command, this function can obtain more accurate point positions. When calculating the target point position, the array is divided into four regions, and then the three points closest to the target point are automatically selected in each region for Matrix3 operation.

Parameter	Description
Matrix Name	Name of the Matrix to be manipulated
p1-1	Specifies the first point in the first row of the parallelogram, also
	called the origin, of type CPOS.
p1-2	Specify the last point of the first row of the parallelogram, type
	CPOS
p2-1	Specifies the first point of the last row of the parallelogram, of type
	CPOS
p2-2	Specify the point near the first point in the middle of the
	parallelogram, type CPOS
Number of	Specifies the last point of the last row of a parallelogram, of type
rows	CPOS
Columns	Generates the number of rows of the array, type INT

10.12.4 SetMatrix9

To form a parallelogram array in space by specifying four points, and then evenly divide this parallelogram into a matrix point group according to the set number of rows and columns. This function can obtain more accurate point positions compared to the Matrix3 command. When calculating the target point position, the array is divided into 9 regions, and then the three points closest to the target point are automatically selected in each region for Matrix3 operation. When the number of rows or columns is even, the middle point should be selected as the point closest to the first point of the row or column at the middle position.

1 SetMatrix9			1. SetMatrix9	
2 GetMatrix9		Сору		elete
		Matrix Name	: MM9 ~	
		p1-1	: P1	~
			СРОЅ	$\otimes \times$
		p1-2	: P2	v N
			CPOS	\otimes \times
		p1-3	: P3	
			СРОЅ	
		p2-1	: P4	×
		p2-2	: P5	
		pee	СРОЅ	
P1-1	P1-2		P1-3	
	112		110	
P2-1	P2-2		P2-3	
P3-1	P3-2		P3-3	

Parameter	Description
Matrix Name	Name of the Matrix to be manipulated
p1-1	Specifies the first point in the first row of the parallelogram, also
	called the origin, of type CPOS.
p1-2	Specifies the point near the first point at the middle of the first row
	of the parallelogram, type CPOS
p1-3	Specifies the last point of the first row of the parallelogram, of type

	CPOS
p2-1	Specifies the first point in the last row of a parallelogram, of type
	CPOS
p2-2	Specify the point near the first point in the middle of the
	parallelogram, type CPOS
p2-3	Specify the last point of the last row of the parallelogram, type
	CPOS
p3-1	Specify the first point of the last row of the parallelogram, type
	CPOS
p3-2	Specify the point near the first point in the middle of the last row
	of the parallelogram, type CPOS
p3-3	Specify the last point in the last row of the parallelogram, type
	CPOS
Number of	Number of rows of the generated array, type INT
rows	
Number of	Generates the number of columns of the array, type INT
columns	

10.12.5 GetMatrix2

Take the value of the corresponding point in the row and column after the execution of the SetMatrix command and assign it to the target point. The orientation and additional axis angle value of the target point remain consistent with those of the p1 point in the SetMatrix command.

1 - SetMatrix2	2. GetMatrix2
2 - GetMatrix2	Copy Comments Delete
	Matrix Name : MM2 - 🖉 🕂
	TarPos : P3 v
	CPOS 🔊 🗙
	Point Number : int1 v

Parameter	Description
Matrix Name	Name of the Matrix to be manipulated
Target Point	The value of the point to be fetched, type CPOS.
Point number	The serial number of the point to be fetched in the Matrix, type
	INT, the serial number counts from 0.

10.12.6 GetMatrix3


Take the value of the corresponding point in the row and column after the execution of the SetMatrix command and assign it to the target point. The orientation and additional axis angle value of the target point remain consistent with those of the p1-1 point in the SetMatrix command.

SetMatrix3	2. GetMatrix3			
GetMatrix3	Сору		Comments	Delete
	Matrix Name	:	ММЗ	~ Z +
	Row	:	hang	~ 2+
	Column	:	lie	× 2+
	TarPos	:	P4	~
			CPOS	\otimes \times

Parameter	Description
Matrix Name	Name of the Matrix to be manipulated
Rows	Row number of the point to be fetched in the matrix, type INT,
	number counting from 0
Columns	Row number of the point to be fetched in the matrix, type INT,
	counting from 0
Target Points	The value of the point to be fetched, type CPOS.

10.12.7 GetMatrix4

Take the value of the corresponding row and column of the point after the execution of the SetMatrix command and assign it to the target point. The orientation and additional axis angle value of the target point remain consistent with those of the p1-1 point of the SetMatrix command. Compared with the Matrix3 command, this function can achieve more accurate point positions. When calculating the target point position, the array is divided into four regions, and then three points closest to the target point are automatically selected in each region for Matrix3 operation.

Parameter	Description
Matrix Name	Name of the Matrix to be manipulated
Rows	Row number of the point to be fetched in the matrix, type INT,
	number counting from 0
Columns	Row number of the point to be fetched in the matrix, type INT,
	counting from 0

10.12.8 GetMatrix9

Take the value of the corresponding row and column of the point after the execution of the SetMatrix command and assign it to the target point. The orientation and additional axis angle value of the target point remain consistent with those of point p1-1 in the SetMatrix command. Compared with the Matrix3 command, this function can achieve more accurate point positions. When calculating the target point position, the array is divided into 9 regions, and then three points closest to the target point are automatically selected in each region for Matrix3 operation.

SetMatrix9			2. GetMatrix9	
GetMatrix9	Сору		Comments	Delete
	Matrix Name	:	MM9	~ 🖉
	Row	:	hang	~ 🛛
	Column	:	lie	~
	TarPos	:	P10	
			СРОЅ	

Parameter	Description
Matrix Name	Name of the Matrix to be manipulated
Rows	Row number of the point to be fetched in the matrix, type INT,
	number counting from 0
Columns	Row number of the point to be fetched in the matrix, type INT,
	counting from 0
Target Points	The value of the point to be fetched, type CPOS.

10.13 String instructions

10.13.1 APosToStr

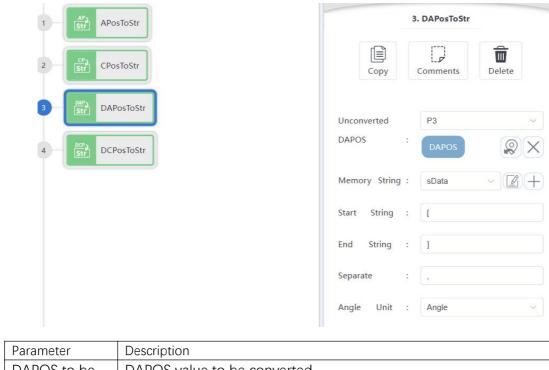
This instruction is used to convert the Apos variable into a string variable.

1 - APosToStr	1. APosToStr	
2 CPosToStr	Copy Comments Delet	
3 DAPosToStr	Unconverted P1	~
4 DCPosToStr	APOS : APOS Memory String : sData ~	2 × 2 +
	Start String : [
	End String :]	
	Separate : ,	
	Angle Unit : Angle	~

Parameter	Description
APOS to be	APOS values to be converted
converted	
Stored String	Converted string variable
Start String	Add start string
End String	Adding the ending string
Split character	Spacing between values
Angle unit	Angular units in APOS

10.13.2 CPosToStr

This instruction is used to convert the Cpos variable into a string variable.


APosToStr	2. CPosToStr
CPosToStr	Copy Comments Delete
DAPosToStr	Unconverted P2 ~
DCPosToStr	CPOS : CPOS
	Memory String : sData ~
	Start String : [
	End String :]
	Separate : ,
	Angle Unit : Angle 🗸
	Length Unit : Millimetre \lor

Parameter	Description
CPOS to be	CPOS value to be converted
converted	
Stored String	Converted string variable
Start String	Add start string

End String	Adding the ending string
Split character	Interval symbols between values
Angle unit	Angle numeric unit in CPOS
Length unit	Numerical units of length in CPOS

10.13.3 DAPosToStr

This instruction is used to convert the DApos variable into a string variable.

DAPOS to be	DAPOS value to be converted
converted	
Stored Strings	Converted string variable
Start String	Add start string
End String	Adding the ending string
Split character	Spacing between values
Angle unit	DAPOS Angle Unit Format

10.13.4 DCPosToStr

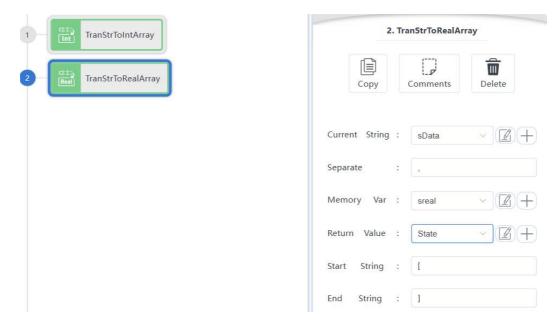
This instruction is used to convert the DCpos variable into a string variable.

1 APosToStr	4. DCPosToStr
2 Str CPosToStr	Copy Comments Delete
3 Str DAPosToStr	Unconverted P4 ~
4 - Str DCPosToStr	DCPOS : DCPOS
	Memory String : sData \vee 🖉 +
	Start String : [
	End String :]
	Separate : ,
	Angle Unit : Angle \vee
	Length Unit : Millimetre ~

Parameter	Description
DCPOS to be	DCPOS values to be converted
converted	
Stored Strings	Converted string variable
Start String	Add start string
End String	Adding the ending string
Split character	Spacing symbols between values
Angle unit	DCPOS Angle Numeric Units
Length unit	Numerical units of length in DCPOS

10.13.5 TranStrToIntArray

This instruction is used to convert a string variable into an int array variable.


TranStrToIntArray	1. T	ranStrToIntArr	ay
TranStrToRealArray	Сору	Comments	Delete
	Current String :	sData	~ Z+
	Separate :	1	
	Memory Var :	arr1	~ Z +
	Return Value :	State	~ 2+
	Start String :	[
	End String :	1	

Parameter	Description	
Current String	String to be converted	
Splitter	Spacing symbols between values	
Stored	The int array variable after conversion.	
Variables		

Return Value	Return value variable for success, 0 means success, 1 means	
	failure.	
Starting String	Add start string	
End String	Add the end string.	

10.13.6 TranStrToRealArray

This instruction is used to convert a string variable into a real array variable.

Parameter	Description
Current String	String to be converted
Splitter	Spacing symbols between values
Stored	The real array variable after conversion.
Variables	
Return Value	Return value variable for success, 0 means success, 1 means
	failure.
Starting String	Add start string
End String	Add the end string.

10.13.7 TranStrToApos

This instruction is used to convert a string variable to an Apos variable.

1 TranStrToApos	1. TranStrToApos
2 TranStrToCpos	Copy Comments Delete
3 TranStrToDApos	Current String : sData v
4 TranStrToDCpos	Separate : ,
	Memory Var : P1 ~
	APOS 🔊 🗙
	Return Value : State ~
	Start String :
	End String :]
	Angle Unit : Angle 🗸

Parameter	Description
Current String	String to be converted
Splitter	Spacing symbols between values
Stored	Apos variable after conversion
Variables	
Return Value	Return value variable of whether the operation is successful or not,
	a return value of 0 means success, a return value of 1 means
	failure.
Starting String	Add start string
End String	Add end string
Angle unit	Angle numerical units in APOS

10.13.8 TranStrToCpos

This instruction is used to convert a string variable to a Cpos variable.

1 TranStrToApos	2. TranStrToCpos
2 Cerei TranStrToCpos	Copy Comments Delete
3 TranStrToDApos	Current String : sData v
4 TranStrToDCpos	Separate : ,
	Memory Var : P2 ~
	CPOS 🔊 🗙
	Return Value : State \vee 🖉 +
	Start String : [
	End String :]
	Angle Unit : Angle \vee
	Length Unit : Millimetre \vee

Parameter	Description
Current String	String to be converted
Splitter	Spacing symbols between values
Stored	Cpos variable after conversion
Variables	
Return Value	Return value variable of whether the operation is successful or not,
	a return value of 0 means success, a return value of 1 means
	failure.
Starting String	Add start string
End String	Add end string
Angle unit	Angle unit of Cpos
Length unit	Cpos unit of length

10.13.9 TranStrToDApos

This instruction is used to convert a string variable to a DApos variable.

1 TranStrToApos	3. TranStrToDApos
2 TranStrToCpos	Copy Comments Delete
3 TranStrToDApos	Current String : sData \vee 🖉 +
4 TranStrToDCpos	Separate : ,
	Memory Var : P3 ~
	DAPOS 😰 🗙
	Return Value : State V
	Start String : [
	End String :]
	Angle Unit : Angle 🗸

Parameter	Description
Current String	String to be converted
Splitter	Spacing symbols between values
Stored	DApos variable after conversion
Variables	
Return Value	The return value of the operation, a value of 0 indicates success, a
	value of 1 indicates failure.
Starting String	Add start string
End String	Add end string
Angle unit	Angle unit form in DApos

10.13.10 TranStrToDCpos

This instruction is used to convert a string variable to a DCpos variable.

	TranStrToApos
2 (C1-1	TranStrToCpos
3 (cb.t.) [Apos	TranStrToDApos
	TranStrToDCpos

	4. T	ranStrToDC	oos
Copy	C	(comments	Delete
Current String	:	sData	~ 2+
Separate		,	
Memory Var	:	P4	~
		DCPOS	$\mathbb{Q} \times$
Return Value	:	State	~ 2+
Start String	:	[
End String	:	1	
Angle Unit	:	Angle	×
Length Unit	:	Millimetre	~

Parameter	Description
Current String	String to be converted
Splitter	Spacing symbols between values
Stored	DCpos variable after conversion
Variables	
Return Value	Return value variable for successful operation, 0 means success, 1
	means failure.
Starting String	Add start string
End String	Add end string
Angle unit	Angle unit of DCpos
Length unit	The unit of length in DCpos

10.13.11 IntArrayToString

This instruction is used to convert an Int array into a string.

1 IntArrayToString	1. IntArrayToString			g
2 RealArrayToString	Cop		Comments	Delete
3 BoolArrayToString	Int Arra	ay :	arr1	~ 2+
	String	8	sData	~ Z+
	Start Stri	ing :	[
	End Strir	ng :]	
	Separate	:	1	

Parameter	Description
Current String	String to be converted
Int Array	Array to be converted
String	Output string result
Starting String	Add start string
End String	Add end string
Separator	Spacing between values

10.13.12 RealArrayToString

This instruction is used to convert a Real array into a string.

IntArrayToString	2	2. RealArrayToString		
RealArrayToString	Сору		Comments	Delete
Str BoolArrayToString	Real Array	:	sreal	~ 🛛
	String	:	sData	~ 🛛
	Start String	:]	
	End String	:]	
	Separate	:	1	

Parameter	Description
Real Array	Array to be converted
String	Output string result
Start String	Add start string
End String	Add end string
Separator	Spacing between values

10.13.13 BoolArrayToString

This instruction is used to convert a Boolean array into a string.

1 IntArrayToString	3. BoolArrayToString		
2 RealArrayToString	Сору	Comments Delete	
3 BoolArrayToString	Bool Array	: barr v 🖉 +	
	String	: Please select v	
	Start String	:	
	End String	: 1	
	Separate	3	

Parameter	Description
Bool Array	Array to be converted
String	Output string result
Start String	Add start string
End String	Add end string
Separator	Spacing between values

10.14 RS485 Instructions

10.14.1 RS485Init

This command is used to initialize the RS485 port on the control cabinet.

1 RS485Init	1. RS485Init
2 RS485Read	Copy Comments Delete
3 RS485Write	Number : 2.(Robot terminal interface) V
4 RS485FlushReadBuffer	Baud Rate : 115200 ~
	Data Bit : 8 ~
	Parity : None ~
	Stop Bit : 1
	Return Value : State

Parameter	Description
No.	Robot control cabinet RS485 port or robot end RS485 port
Baud rate	RS485 communication baud rate
Data Bit	RS485 communication data bits
Check Bit	RS485 communication parity bit
Stop Bit	RS485 communication stop bit
Operation	Return value variable of whether the operation is successful or not,
Return Value	a return value of 0 means success, and a return value of 1 means
	failure.

10.14.2 RS485Read

This command is used to read the RS485 data on the control cabinet.

1 - 🕎 RS485Init	2. RS485Read
2 - RS485Read	Copy Comments Delete
3 RS485Write	Number : 2.(Robot terminal interface) ~
4 RS485FlushReadBuffer	Int Array : arr1 ~
	Timeout time : 3000 ms
	Byte Number : 5
	Return Value : State V

Parameter	Description	
No.	Robot control cabinet RS485 port or robot end RS485 port	
Int array	Variable in which the data to be read is stored	
Timeout Time	Timeout for reading, if no data is read after this time, an error will	
	be reported.	
Bytes	Length of data bytes to be read	
Operation	Return value variable of whether the operation is successful or not,	

Return Value	a return value of 0 means success, and a return value of 1 means	
	failure.	

10.14.3 RS485Write

This instruction is used to control the RS485 data transmission on the control cabinet.

1 - RS485Init	3. RS485Write
2 RS485Read	Copy Comments Delete
3 RS485Write	Number : 2.(Robot terminal interface; ~
4 RS485FlushReadBuffer	Int Array : arr1 v 🖉 +
	Byte Number : 5
	Return Value : State ~ 🖉 +

Parameter	Description
No.	Robot control cabinet RS485 port or robot end RS485 port
Int arrays	Variable where data to be sent is stored
Bytes	Length of data bytes to be sent
Operation	Return value variable of whether the operation is successful or not,
Return Value	a return value of 0 means success, and a return value of 1 means
	failure.

10.14.4 RS485FlushReadBuffer

This command is used to clear the cache data read from the RS485 port on the control cabinet. It is generally cleared after reading to ensure normal reading in the next operation. Alternatively, it can be left uncleared, and the data can be processed together after multiple receptions.

1 🕎 RS	485Init		4. RS	485FlushReadB	uffer
2 - 🕎 RS	485Read		ру	Comments	Delete
3 🐯 RS	485Write	Number	;	2.(Robot terr	ninal interface; 🔗
4 RS	485FlushReadBuffer	Attr Setti	ngs		\sim
		Desc	:	input string	
Parameter	Description				
No.	Robot control cabinet f	RS485 port or rob	oot en	d RS485 p	ort

10.15 Mathematical operation functions

In the "IF" instruction and "..." =..." In the instructions, mathematical operation functions or string operation functions may be used. This section explains the "mathematical functions" that can be used.

10.15.1 sin

Sine trigonometric function.

Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.2 cos

Cosine trigonometric function.

Parameter 1: An integer or real type variable or constant.

The function return value: a real constant.

10.15.3 tan

Tangent trigonometric function.

Parameter 1: An integer or real type variable or constant.

The function return value: a real constant.

10.15.4 asin

Inverse sine trigonometric function.

Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.5 acos

Inverse cosine trigonometric function. Parameter 1: An integer or real type variable or constant. The function return value: a real constant.

10.15.6 atan

Inverse tangent trigonometric function.

Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.7 atan2

The X/Y inverse tangent function returns the radian value from the X-axis to the point (x, y).

Parameter 1: An integer or real variable or constant.

Parameter 2: An integer or real variable or constant.

The function return value: a real constant.

10.15.8 sinh

Hyperbolic sine function.

Parameter 1: An integer or real type variable or constant.

The function return value: a real constant.

10.15.9 cosh

Hyperbolic cosine function.

Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.10 tanh

Hyperbolic tangent function.

Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.11 log

Natural logarithmic function. Parameter 1: An integer or real type variable or constant. The function return value: a real constant.

10.15.12 log10

The logarithmic function with base 10. Parameter 1: An integer or real type variable or constant. The function return value: a real constant.

10.15.13 sqrt

Square root function.

Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.14 exp

The exponential function with base e. Parameter 1: An integer or real variable or constant. The function return value: a real constant.

10.15.15 pow

Exponential function.

Parameter 1: An integer or real variable or constant, representing the base.

Parameter 2: An integer or real variable or constant, representing the exponent.

The function return value: a real constant.

10.15.16 deg

Radian-to-degree conversion function. Parameter 1: An integer or real type variable or constant. The function return value: a real constant.

10.15.17 rad

Function for converting degrees to radians. Parameter 1: An integer or real variable or constant. The function return value: a real constant.

10.15.18 fmod

Modulo function.

Parameter 1: An integer or real variable or constant, the dividend.

Parameter 2: An integer or real variable or constant, the divisor.

The function return value: a real constant.

10.15.19 floor

Floor function.

Parameter 1: An integer or real type variable or constant. The function return value is an int type constant.

10.15.20 random

Get a random integer between two parameters. Parameter 1: An integer variable or constant. Parameter 2: An integer variable or constant. The function return value is an int type constant.

10.16 String Functions

10.16.1 byte

Get the ASCII code of the character at the nth position in the string.Parameter 1: A string type variable or constant.Parameter 2: An integer variable or constant.The function return value is an int type constant.

10.16.2 char

Return the character corresponding to the ASCII code. Parameter 1: An integer variable or constant. The function returns a string type constant.

10.16.3 find2

Return the position of a substring in a string.

Parameter 1: A string type variable or constant.

Parameter 2: string type variable or constant

The function return value is an int constant. (When the corresponding character or string is not found, the return value is -1.)

10.16.4 findEnd

The string reverse search instruction finds the last occurrence of a specified string within a string and returns the index number.

Parameter 1: The source string to be searched, a string type variable or constant.

Parameter 2: The specified string to be searched for, a string type variable or constant.

The function return value: the index number after the search, an int type variable.

10.16.5 format

The formatted string instruction returns the formatted data by passing a reasonable format control character in parameter 1, followed by any number of parameters to fill this format control character.

Parameter 1: String format, a string type variable or constant.

Parameter 2: The parameter to be filled with the format specifier, a string/real/int type variable or constant.

Parameter 3: The parameter to be filled with the format specifier, a string/real/int type variable or constant.

... There are no restrictions on the parameters. The total length just needs to be within the limit of a single instruction string.

The return value of the function: the number of successfully split and saved elements in the array, an int type variable.

Format strings start with % and support the following usages: %c - accepts a number and converts it to the corresponding character in the ASCII table; %d, %i - accepts a number and converts it to a signed integer format; %o - accepts a number and converts it to an octal format; %u - accepts a number and converts it to an unsigned integer format; %x - accepts a number and converts it to a hexadecimal format using lowercase letters x; %X - accepts a number and converts it to a hexadecimal format using uppercase letters X; %f - accepts a number and converts it to a hexadecimal format using uppercase letters X; %f - accepts a number and converts it to a floating-point format; %s - accepts a string and formats it according to the given parameters. Examples: format("%c: %c", 83) outputs S; format("%+d", 17.0) outputs +17; format("%05d", 17) outputs 00017; format("%o", 17) outputs 21; format("%u", 3.14) outputs 3; format("%x", 13) outputs d; format("%XX", 13) outputs D; format("%6.3f", 13) outputs 13.000; format("%s", "monkey") outputs monkey; format("%10s", "monkey") outputs monkey.

10.16.6 getAt

Single string acquisition instruction: Acquire the string data of a specific position and return the acquired data.

Parameter 1: The string to be extracted, a string type variable or constant.

Parameter 2: The position to be obtained, an int type variable or constant.

Function return value: The obtained string, a string-type variable.

10.16.7 gsub

Search for the substring `a` within the string `s` and replace it with the string `b`.

Parameter 1: A string type variable or constant.

Parameter 2: A string type variable or constant.

Parameter 3: A string type variable or constant.

The function returns a string type constant.

10.16.8 len

Calculate the length of a string. Parameter 1: A string type variable or constant. The function return value is an int type constant.

10.16.9 left

The string left extraction instruction starts from the left side of the string, extracts a specified number of characters, and returns the extracted data.

Parameter 1: The string to be extracted, a string type variable or constant.

Parameter 2: The quantity to be extracted, an int type variable or constant.

The function return value: the truncated string, a string type variable.

10.16.10 lower

Return the lowercase format of the string.

Parameter 1: A string type variable or constant.

The function returns a string type constant.

10.16.11 right

The string right extraction instruction starts from the right side of the string, extracts a specified number of characters, and returns the extracted data.

Parameter 1: The string to be extracted, a string type variable or constant.

Parameter 2: The quantity to be extracted, an int type variable or constant.

The function return value: the truncated string, a string type variable.

10.16.12 reverse

The string reversal instruction reverses the string and returns it.

Parameter 1: The string to be reversed, a string type variable or constant.

The function return value: the reversed string, a string type variable.

10.16.13 strcmp

String comparison instruction, returning the ASCII code difference between the first different characters.

Parameter 1: The string data to be compared, a string type variable or constant.

Parameter 2: The string data to be compared, a string type variable or constant.

The function return value: The returned ASCII code value, an int type variable.

10.16.14 trimLeft

The left trim instruction for strings removes the spaces on the left side of the string and returns the modified string data.

Parameter 1: The string to be trimmed, a string-type variable or constant.

The function return value: the trimmed string, a string type variable.

10.16.15 trimRight

The string right trim instruction removes the spaces on the right side of the string and returns the modified string data.

Parameter 1: The string to be trimmed, a string-type variable or constant.

The function return value: the trimmed string, a string type variable.

10.16.16 upper

Return the uppercase format of the string.

Parameter 1: A string type variable or constant.

The function returns a string type constant.

10.16.17 IToStr

The integer-to-string conversion instruction converts integer data into string type data and returns the converted string.

Parameter 1: The integer data to be converted, an int type variable or constant.

The function return value: the converted string data, a string type variable.

10.16.18 RToStr

The real number to string conversion instruction converts real number data into string type data and returns the converted string.

Parameter 1: The real number data to be converted, a REAL type variable or constant.

The function return value: the converted string data, a string type variable.

10.16.19 StrTol

The string-to-integer conversion instruction converts string data into integer type data and returns the converted integer data.

Parameter 1: The string data to be converted, a string type variable or constant.

The function return value: the converted integer data, an int type variable.

10.16.20 StrToR

The string-to-real data conversion instruction converts string data into real number type data and returns the converted real number.

Parameter 1: The string data to be converted, a string type variable or constant.

The function return value: the converted real number data, a REAL type variable.

10.16.21 Append

The Append instruction is used to append strings.

Parameter 1: The string to be appended 1.

Parameter 2: String 1 to be appended.

The function return value: a string type variable of string 1 + string 2.

Appendix to Chapter 1

11.1 Error Codes

Currently, there are a total of 6 information levels for the robot. The fourth digit of the error code indicates the error level.

No.	Error & Level
0	System occupancy
1	System prompt
2	Alert
3	General Error
4	Critical error
5	Fatal error

When general errors or more serious issues occur, the robot will power off and stop operating.

When a warning-level error occurs, the robot will slow down and stop.

If multiple errors occur at the same time, the one with the highest severity level will be executed.

There will only be one error code for the same type of error, but the specific error content will be displayed on the teaching pendant.

Error Code	Description
FFF10000	Undefined Hints
FFF20000	Undefined warning
FFF30000	Undefined error
FFF40000	Undefined Critical Error
50010000	Robot power-up prompt
50010001	Robot power down prompt
50010002	Robot encoder calibration prompt
50030003	Robot state switching timeout
50040004	Abnormal axis status
50030005	Unusual position at pointing
50010006	Reset
50030007	Reset timeout
50030008	Joint position overrun
50030009	End position overrun
5003000A	Joint desired position jump
5003000B	Joint output torque jump
5003000C	Joint tracking error too large
5003000D	Joint speed overrun
5003000E	Joint collision detection trigger
5003000F	Unable to effectively calculate joint collision detection
50030010	Unable to calculate end collision detection effectively
50030011	End collision detection trigger
50030012	End speed overrun
50030013	Error while dragging
50030014	Error when dragging stops

50030015	Connot porform and point movement		
50020016	Cannot perform endpoint movement		
50020010	Error when resetting motion planner Error setting initial position of Motion Planner		
50020017			
50020018	Error in adding commands to the Motion Planner Emergency stop		
50030019 5002001A			
5002001A 5003001B	Parameterization is in progress.		
5003001B 5002001C	Error during parameterization		
	Emergency stop pressed during power-up		
5002001D	Desired joint speed jump		
5002001E	Drag and drop overspeed		
5002001F	Configuration parameters changed during motion		
58020000	Illegal IO configuration		
58020001	Illegal bus configuration		
59020000	Welder current setting error		
59020001	Wrong welder voltage setting		
60020000	Motion planner path calculation error		
60020001	Motion planner operation error		
60020003	Node data to json failed		
60020004	Failed to get shared memory node		
60030003	Failed to get inverse matrix of robot's velocity Jacobi matrix		
60030004	Failed to get the inverse matrix of the force Jacobi matrix of the robot.		
60030005	Failed to get the positive kinematic position of the robot		
60030006	Failed to get the positive kinematic velocity of the robot		
60030007	Cannot get the inverse kinematic position of the robot		
60030008	Cannot get the inverse kinematic velocity of the robot		
60030009	Wrong robot setup		
6003000A	Joint overrun		
6003000B	Unable to get robot inverse kinematics		
6003000C	Cannot get robot joint equivalent moments of inertia		
6003000D	Cannot get robot joint equivalent gravitational moments		
6003000E	Unable to get the equivalent kinematic moments of the robot joints.		
6003000F	It is not possible to obtain the inertia matrix of a robot dynamics model.		
60030010	It is not possible to obtain the gravity matrix for a robot dynamics model.		
60030011	It is not possible to obtain the scientific force matrix of the robot dynamics		
	model.		
60030012	It is not possible to obtain the rotation matrix from the base coordinate		
	system to the flange coordinate system of the robot.		
61010000	Unknown file		
61010001	File parsing error		
61010002	File loading error		
61010003	Format-specific file conversion error		
61010004	Format-specific file write error		
7002000	Fitting matrix is not full of rack		
70020000 70020001	Fitting matrix is not full of rank		
10020001	Calibrated triple point covariance		
71020000	Robot initial position unknown		
71020001	Insufficient initial conditions, wait for additional conditions, no error		
	reported.		
71020002	Input reference coordinate system type does not exist during relative		

	motion.
71020003	Transition type unknown
71020004	Point type unknown
71020005	Arc type unknown
71020006	Move command queue is full
71020007	Velocity is not normal
71020008	Unable to create path
71020009	Index out of range
71020003 7102000A	Failed to solve
7102000X	Trajectory planning failed
7102000D 7102000C	Move type does not exist
7102000C	Move type does not exist Move type mismatch
7102000D 7102000E	Trigger type does not match
7102000E	The Move command Id for the trigger does not exist.
71020001	Path attribute does not exist
71020010	
71020011	Trigger type does not match
71020012	The Move command Id of the trigger does not exist.
71020013	Position point does not exist
	Motion magnification is out of range
71020015	The number of points exceeds the maximum value
71020016	Parameter error
71020017	Spline interpolation failure
71020018	Index update failure
71020019	Failed to get arm angle
76020000	Oscillation type not present
76020001	Oscillation amplitude is negative
76020002	Oscillation frequency is negative
76020002	Oscillation angle is negative
76020004	Operation angle is negative
76020005	Left dwell time is negative
76020006	Negative right dwell time
76020007	Frequency too low
76020008	Frequency too high
76020009	Dwell time too long
7602000A	Azimuth too large
7602000R	Path type does not exist
7602000D	Weld direction is the same as the Z direction of the current tcp, unable to
10020000	determine the swing direction
7602000D	Compensation method does not exist
7602000E	Compensation value update failure
7602000F	Incorrect number of sampling periods
76020010	The number of sampling cycles used for reference value calculation is
10020010	wrong
76020011	Attitude correction failure
76020012	Point position update failure
76020012	Surfacing error
78030000	Input parameter dimensions do not match the robot
78030001	External force estimator initialization failure
78030002	External force estimator did not set initial state
78030003	Kalman filter built into the external force estimator fails to update the output.

78030104	Unable to get the joint external force estimated by the external force
10000101	estimator.
78030105	Cannot get the joint acceleration estimated by the external force estimator
78030106	The collision detector was not initialized successfully.
78030107	Cannot get the status of collision detection.
78030108	Failure to initialize the conductivity controller.
78030109	The parameter setting of the guider controller is wrong.
7803010A	Unable to update the output of the joint guide program.
7803010B	The end space axis lock was not initialized successfully.
7803010C	Unable to set the direction of end space lock
7803010D	Cannot get the end impedance force of end space lock.
7803010E	Unable to get the impedance force of the end locking axis converted to
	the joint end.
7803010F	Unable to update the output of the teach-in program
78030110	The joint limit in drag mode is exceeded.
78030111	Unable to acquire external force from the six-dimensional force transducer
78030112	Constant force tracking & soft force control is turned on at the same time
	during force control, not allowed.
80030000	Joint tracking error overrun trigger
80030001	Joint collision detection trigger
80030002	Joint position limit trigger
80030003	Joint speed limit trigger
00030003	
91010000	WHILE control expression is empty
91010001	IF control expression is empty
91010002	ELSEIF control expression is empty
91010003	ELSE control followed by ELSEIF
91010004	Unknown operator
91010005	The variable name of the data is not of string type
91010006	Wait time parameter is not an integer
91010007	Control parameter is not legal
91010008	Control type is not legal
01001007	
91021007	Failed to open configuration file
91011008	Failed to save global variable
91011009	Failed to get global variable
9101100A	Failed to save project variables
9101100B	Failed to get project variables
9101100C	Failed to save project
9102100D	Failed to read project file
9102100E	Failed to read lua file
92020000	Array variable index out of range
92020001	Failed to find variable by variable name
92020002	Unknown Variable Type
92020003	Failed to find IO port
92020004	Request parameter error
02010000	
93010000	Setting shared memory node failed
93010001	CPOS to APOS failed
93010002	APOS to CPOS failed
93010003	Point data calculation failure
93010004	Motion kernel state error

93010005	Calibration Failure
94010002	Subscribed topic does not exist
94010003	Failed to open topic configuration file
94010004	Failed to parse topic configuration file
94010005	Duplicate topic name
94010006	Memory node corresponding to topic not found
96010000	Unknown command parsed
96020001	Failed to load instruction
96020003	Kernel state does not support this directive
96020004	Project status does not support this instruction
96020005	Invalid project control command
96020006	Failed to load project data
96020007	Project load failed
96020008	Invalid control ID for project start run
91010009	Project started running
9101000A	Project stopped running
9101000B	Task status error
97020000	Too many addDo commands
97020001	Jump control does not exist
97020002	Illegal IO port number parameter
97020003	Lua execution expression fails
97020004	Invalid task control instruction
97020005	AddDo instruction execution failure
97020006	Failed to execute an instruction in the Waiting for Execution instruction
	queue
97020007	Execution of unknown instruction
97020008	Lua load instruction failed
97020009	Failed to execute instruction in lua
9702000A	Failed to write instruction to motion kernel
9702000B	Failed to update AddDo instruction status
9702000C	Registering variables to lua failed
9702000D	Failed to initialize lua
9702000E	Failed to load initialization for lua configuration scripts
9702000F	Unknown user variable type
97020010	Failed to create Path
97020011	Calculate Path failed
97020012	Failed to run Path
97020013	OnDistance cannot be associated with MovJ command
97020014	Invalid parameter

11.2 User Levels and Permissions

Category	Function	user	admin
Project	New	1	✓
	Switch	1	✓
	Save	1	✓
	Сору	1	\checkmark

	Download	\checkmark	√
	Delete	\checkmark	▼ ✓
	Import	✓ ✓	↓
	Autorun	✓ ✓	 ✓
	Stop	✓ ✓	✓ ✓
	Single-step run	✓ ✓	✓ ✓
	Run pointer	✓ ✓	✓ ✓
	Single-task and multi-task switching	✓	✓ ✓
Visual	Control View	✓	✓
Programmin	Drag and Drop Commands	✓	√
g	Add Command	✓	✓
	Command Selection	✓	✓
	Command Properties Editing	✓	\checkmark
	Command Copy	✓	\checkmark
	Command Delete	\checkmark	\checkmark
	Expanding and Collapsing Tree Commands	√	√
	Command Attribute Editing Checksums	√	✓
	Conditional expression checking	✓	\checkmark
	Target value checking for goto type	✓	\checkmark
	instructions		
	Check result message	\checkmark	\checkmark
Positioning	Add Position	✓	\checkmark
	Deleting poses	√	\checkmark
	Duplicating poses	1	1
	Adding a pose from a mov control	1	√
	Updating a pose from a mov-like control	✓	\checkmark
Variables	Adding Variables	✓	\checkmark
(and broo	Deleting Variables	√	✓ ✓
	Editing Variables	√	✓ ✓
	Displaying Variables	√	√
	Running variables in real time	✓ ✓	↓ ↓
	Adding a Variable of a Specified Type	✓ ✓	✓ ✓
	from the Control Properties	•	v
Setup	Basic	X (No	X (No
Jetup		authority)	authority)
	Mechanics - Installation	X(No	✓
		authority)	v
	Mechanical - Relative to World	X(No	✓
	Coordinate System	authority)	
	Mechanical - DH	X (No	X(No access)
		access)	x (100 decess)
		,	
	Safety - Joint/End Limits	X(No authority)	✓
	Safety - Other	X(No	✓
		authority)	
	Motion - automatic mode	X(No authority)	\checkmark
	Motion - manual mode	X(No	✓
		authority)	

	Motion-Servo	X(No access)	×
	Debugging	X	X
3D	Simulation Show	√ √	√
Simulation	Switching Viewpoints	· ✓	 ✓
	Clearing the trajectory line	✓	✓ ✓
	Return to zero position	✓ ✓	✓ ✓
	Return to packing position	↓ ↓	✓ ✓
	Switch coordinate system	↓ ↓	✓ ✓
	Teach mode configuration	↓ ↓	 ✓
	Automatic mode	✓ ✓	✓ ✓
	Manual mode	↓ ↓	 ✓
	Nodal movement	✓ ✓	✓ ✓
	End Point Motion	✓ ✓	✓ ✓
	I/O Configuration	∨	✓ ✓
	Peripherals	∨ ✓	✓ ✓
Logging	View	✓ ✓	✓ ✓
LUgging	Download	✓ ✓	✓ ✓
Plug-ins	Welding Process Template List	✓ ✓	✓ ✓
Flug-IIIS	Add Template	✓ ✓	✓ ✓
	Edit Template JOB number selection	✓ ✓	✓ ✓
Manitaring			-
Monitoring	Monitoring System Specify monitoring data	X	X X
Debugging	Send path data	X	× ×
Debuyying		X	× ×
Configuratio	Debug Data Cache		
Configuratio	Changing configuration values	X	X
n	Changing Configuration Structure	X	X
User	Registering a new user	X	\checkmark
	Deleting a user	X	\checkmark
Bus	Register Editing	X	√
Error	Clearing Errors	√	\checkmark
Messages	Reset	✓	\checkmark
	Real-time logging	1	√
Other	Undo and Redo	1	\checkmark
Functions	Reload Configuration	√	✓
	Refresh Page	√	✓
	Maximizing the Module Window	√	✓
	Closing the Module Window	√	✓
	Online Settings	√	✓
	Online status	√	✓
	Lock Window	√	✓
	Switch between Chinese and English	√	✓
	Trace ID related functions	X	X

11.3 Declaration

DECALARATION OF INCORPORATION

According to the following EU Directive(s)						
Fleetremernet	Machinery Directive: 2006/42/EC					
Electromagnet	ic Compatibility Directive: 2014/30/EU					
Manufacturer: Address:	NANJING ESTUN CODROID TECHNOLOGY CO., LTD. 5/F, Building 1, Jiangning Double Innovation Base, National University Science Park, Southeast University, No.33, Southeast University Road, Jiangning District. Nanjing, 211102 Jiangsu, P. R. China					
Declares that the mach	nine described here after					
Product name:	Collaborative Robots					
Model(s):	S3-60 Eco,S5-90 Eco,S10-140 Eco,S20-180 Eco					
	S3-60 Pro,S5-90 Pro,S10-140 Pro,S20-180 Pro					
Serial No.:						
and the recommendati of the Machinery Direc Person authorized to c Name: ESTU	I and maintained in accordance with the general accepted codes of good practice ons of the instruction manual, meet the essential safety and health requirements tive ompile the technical file: JN Robotics Europe AG een Strasse 25,6340 Baar,Switzerland					
We confirm that: a) The specific technical documents which we provided pursuant to Appendix VII Part B b) The assembly instructions which are provided pursuant Appendix VI c) The declaration of incorporation which we provided pursuant to Appendix II Part 1 Section B of Directive 2006/42/EC Upon justified request, we provide specific documents regarding the products listed above within an adequate period. The document will be made available via e-mail The following essential health and safety requirements are executed and observed according to annex I of the directive specific above: 1.1, 1.1.2, 1.1.3, 1.1.5, 1.1.6, 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.7, 1.3.8, 1.3.9, 1.4.1, 1.4.2.1, 1.4.3, 1.5.2, 1.5.4, 1.5.5, 1.5.6, 1.5.8, 1.5.9, 1.5.11, 1.5.14, 1.5.15, 1.6.1, 1.6.2, 1.6.4, 1.6.5, 1.7.1, 1.7.2, 1.7.3, 1.7.4 For the most specific risks of this machine, safety and compliance with the essential requirements of the Directive has been based on elements of: EN ISO 12100:2010 Safety of machinery - General principles for design - Risk assessment and risk reduction EN 60204-1: 2018 Safety of machinery - Electrical equipment of machines - Part 1: General requirements EN IEC 61000-6-2:2019 Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments						

EN IEC 61000-6-4:2019 Electromagnetic compatibility (EMC) - Part 6-4: Generic standards -Emission standard for industrial environment

The relevant technical documentation is compiled in accordance with part B of Annex VII 2006/42/EC, and are available by reasoned requested by national authorities via proper methods. It must not be put into service until the final machinery into which it is to be incorporated has been declared in conformity with the provisions of the above Directives.

Print Name:	Ge QingQing	Position:	Chief Engineer of Robot
			Development
Signature:	葛文卿	Date:	2024.9.6
Discourse	E/E Duilding 1 Verseine Deuble		
Place:	5/F, Building 1, Jiangning Double		
	Innovation Base, National University		
	Science Park, Southeast University, No.33,		
	Southeast University Road, Jiangning		
	District. Nanjing, 211102 Jiangsu, P. R.		
	China		

Chapter 12 Spare Parts List

The spare parts and consumables system includes vulnerable and consumable components. The items listed in the table and their service lives are for reference only. The actual condition depends on the frequency of use and maintenance.

No.	Name	Model	Brand	Durability
1	Key Switch	NP6-22Y2	CHINT	100000 times
2	Enable Button (black)	HE6B-M200BPN10	IDEC	100000 times
3	Button	HBGO12SH-10W/J/S(N) HBAN		50000 times
4	Button	MP16S/F11-EDY -24V/B	CMP	100000 times
5	Button	NP6-22ZS	CHINT	100000 times
6	Switch Power Supply	LMFXXXX-20B48	MORNSUN	25000h
7	Fan	JC6025B24UC2	JENCE	70000h
8	Thermal Protect	BW-BCM-95°C	SAFTTY	10000cycles

Chapter 13 Contact Information

China:

Nanjing Estun Codroid Technology Co., Ltd.

5F, Building 1, Southeast University National Science Park -Jiangning Branch, No. 33 Southeast University Road, Jiangning District, Nanjing

Service: +86-400-025-3336

Europe:

ESTUN Robotics Europe AG

Graben Strasse 256340 Baar, Switzerland

To improve the product, the specifications, ratings and dimensions of this product may be changed without further notice.

For inquiries regarding the content of this document, please contact our sales department.