ESTUN CODROID
9-SERIES

Robots
User Manual

ROBOTS MODEL:
S3-60 Eco 55-90 Eco 510-140 Eco $20-180 Eco
53-60 Pro 55-90 Pro 510-140 Pro $20-180 Pro

CONTROL CABIENT MODEL:
COB-A03 COB-AD5 COB-AI10 COB-A20

NANJING ESTUN CODROID TECHNOLOGY CO. LTD ORIGINAL INSTRUCTIONS
5/F, Building 1, jiangning, Double innovation Base, National University Science Park, Southeast University. Document No.:UM202410001
No.33, Southeast University Road, jiangning District. Nanjing, 211102 jiangsu, P. R. china Revision:V1.0

400-025-3336 Published:2024-10-10

Contents

CRAPLEE 1 PrEIACE ...ttt ettt ettt s reeen 11
L L S Y ARttt 11
B N E= T 01T 0] = =TT OO 11
1.3 HOW tO USE ThIS IMANUAL ... 11
1.4 Copyright @nd Trad@mArKc.cooiceeeeeeeeeeeee ettt ettt snans 12
1.5 Disclaimer Of the MaNUAL ... 12
1.6 COMIMON TEIMS ..ot 12

181 RODIOT ... 12
1.6.2 MaXimUM WOTKSPACEcucvieesiieseeese ettt ettt ettt ettt 12
1.6.3 PIECISION ..ot 12
1.6.4 RepPeAtaDIITY GCCUIACYcvviceceeeeeeeeeeeeeeeee ettt 12
1.6.5 TraJECLONY GCCUTACY ...cevveeeceeeeeeeeeee ettt ettt ettt n ettt a s 13
1.6.6 Trajectory repetition @CCUIACY ..ottt 13
1.6.7 TOOI CeNter POINT (TCP) ..ottt 13
L.8.8 PAYIOAA ...ttt 13
1.6.9 PrOTECLIVE STOP ettt ettt ettt sttt 13
1.6.10 Singularity (SINQUIAE POINT) ..ottt ettt 13
1.7 REVISION RECOIT ...t 13

Chapter 2 Safety INFOIMAtION ...ttt 14
2.1 Validity and RESPONSIDIIITYcoveereceeeee ettt en s enee e, 14
2.2 The warning symbols appointed in this Manual ... 14
2.3 SATELY PrECAULIONS ..ottt 15
2.4 SAfELY REQUITEMENTS ...ttt ettt n ettt n et ennan e sanans 16
2.5 SATETY DISCIAIMET ...ttt ettt sttt nnenan 17
2.6 LIMItation OF LIDIITY ..ottt ettt 17
B e o T o= 1 (=T o T YOS OTSOTOT 17
2.8 RISK @SSESSIMIEINT ... 18
2.9 SATELY FUNCLION ..ottt ettt ettt 18
2.10 EMEIrGENCY SLOP FECOVEIY ...ttt ettt ettt ettt sttt s s sns 19
2.11 FOrced drive WItNOUL POWEToiciiecee ettt 19
2.12 Stopping time and StOPPING ISTANCE ..ot 19
2.13 Storage, usage and transportation CONAITIONScco.ceiiueieeeieee et 20
2.14 Control cabinet and body idenTifiCatioN ...t 20

Chapter 3 QUICK STAT ..ottt ettt ettt s et s e e et n et s s nee s s enenssas 23
3.1 Confirmation Of PACKING CONTENTS ..ottt 23
3.2 RODOT INSTAITATION ... 23

G000 N = Y oo =1 1 o [T TR 24

Version V1.0 Copyright @ Estun Codroid 2

3. 2.2 HANAING .ttt 24

312.3 INSTAITATION .o 27
3.2.4 Operation POSITION [AYOULc.c.ceiies ettt ettt s et en s, 29
G T 7= A V=11 T OO 30
3.3.1 POWET ON @NA STAM U ottt ettt ettt et 30
3.3 2 WIITE @ PIOGIAIM oottt b8t s st 32
313,38 POWET Off 1 34
Chapter 4 Mechanical Hardware and INStallationcccc.oceiieeiiceciice e 35
4.1 RODOT COMPOSITION ...ttt ettt ettt ettt 35
A2 WOTK SPACE ...ttt ettt ettt ettt 35
4.3 LOAU CUMNVE ... 37
A4 FIANGE INTEITACE ..ottt sttt 40
4.5 INSEAIlAtION INTEITACE ... 44
4.6 RODOT SPECITICATION ..ottt ettt en st en st en st en st ense e, 46
A7 CONTION CADINET ... bbb 47
4.8 HANAIE OPBIATON «...oceeceeeeeee ettt ettt sttt ettt ettt an e 48
Chapter 5 Electrical Hardware and INStallationc.o.vcoueioeceeeeeeeeeeee e 50
5.1 ENA INTEITACE 1. 50
5.1.1 Pro termiNal INTEITACE ... 50
5.1.2 Meaning of the iINdiCator IGNT ST ..ottt 50

5. 1.3 M INTEITACE ... 50
5.2 SCIrEEN INTOIMBTION ...t 51
5.3 CoNtrol CaDINET INTEITACE ... s 53
5.3.1 Overview Of EleCtriCal INTEITACES ..o 53
5.3.2 SATELY INTEITACE ...ttt 54
5.3.3 General INnput and OULPUL OVEIVIEWc.iiiiiiiieeieieesee ettt 55
5.3.4 External power connection method for digital INPUL ..o 56
5.3.5 Internal power connection method for digital INPUL.........ccccooviiiiiciiiieee e 56
5.3.6 External power connection method for digital OULPULccoeviviieeccceeeceeeeeee e 57
5.3.7 Internal power connection method for digital QUIPUL.........cciriririeic e 58
5.3.8 Simulation iINPUL/OULPUL INTEITACE ...ttt 59
5.3.9 CAN/ABS/IO INTEITACE ... 61
5.3.10 LAN NEIWOTK POIT ...ttt 62
5.3.11 CoOmMMUNICATION INPUL......iieieeiiecece ettt ettt ettt n e 63
Chapter 6 MaintenanCe and WAITANTYccoouoeiiieieeeeeeeeee e e n sttt en st an e, 64
5.1 INOTES ... e8RS 64
6.2 Daily INSPECTION TEEMIS ..ottt ettt 64
B.2.1 GENETAI ClEANINGoveeeee ettt ettt neean 64
6.2.2 CONTIOI DOX ...t 65

Version V1.0 Copyright @ Estun Codroid 3

B5.2.3 RODOT ... 66

5.3 SYSTEIM UPAALE ...ttt 66
5.3 1 UPAALE STEPS ...ttt 66
6.4 COMMON IMIISTAKES ..ot 68
6.4.1 Singularity/INVerse SOIULION TAIIUIE ... e 68
6.4.2 Trigger COIlISION AEIECTION ..ottt 69
6.4.3 LOCation/SPeed EXCEEAANCE ..ottt 70
6.4.4 JoINt tracking €rror IS TOO lArQE ..ottt e, 70
B.4.5 ALBIMN CIEATEA ..ot 70
6.5 FAUIL COAE ABSCIIPTION ..ottt ettt en s s 71
8.6 DISCIAIMIET ... 71
6.7 ADANAONEA FTODOTS ...t 72
Chapter 7 Overview of the Teaching Pendant INterface ... 73
T LOQIN INEEITACE .. ettt ettt n st n st n st en st en s anee e, 73
7.2 HOMNE PAGE .ttt ettt ettt ettt et n ettt sttt 73
7.2.1 SWITCH T8I0 @I& ... 74
7.2.2 ACCOUNT SETEINGS BULTON ..ottt neean 74
7.2.3 Error message and real-time 10g WiNAOW DUTEONc.cooiiiiiiiic e 74
7.2.4 Full-screen diSplay DUTLON ..ottt 75
ARG (o[To1 fl 1= J TR T TR 75
7.3.1 QUICK OPEIALION @IEAcevieceeeeeeeeee ettt ettt sen s anaes 76
7.3.2 Graphics Programming ATBa ...ttt 77
7.3.3 POSE ZOMNE ...t 83
734 PArAMETET AT ...t 85
7.3.5 3D SIMUIATION ..ot 86
T30 REGISTET ...ttt 88
T.3.7 17O e 89
7.3.8 Variable Man@QEMEBNT........coiiiceeeeeee ettt ettt ettt ettt 89
7.3.9 ProjeCt Man@QEMEBNT ATcieeieieeeeeeeeeee ettt ettt n st 91
7.3.10 Speed ratio adjUSTMENT @rBa ..ottt 93
T4 SEHHINGS TAD .ottt ettt ettt sttt ettt 93
74D BASIC e 93
7.4.2 ToOIS, 10ad, COOrAINGLE SYSTEIM ..ottt 95

T 4.3 OFNEIS ... 96
T SPOIES ..ottt ettt ettt 98
7.4.5 ReQiStEr COMMUIICATION ...ttt 100
T8 1O s 101
TAT MODBUS MASTET ...ttt 102
TAB PANEI O . 104

Version V1.0 Copyright @ Estun Codroid 4

T8 LOQ D ottt 104

OV TaT=To T=TaaT=T a1 r=Y o J OO T RU TR 105
Chapter 8 INtroduCtion tO Vari@bIES ... 107
8.1 Variable OVEIVIEW ..ot e 107
8.2 VATTADIE ... e 108
B2 L POSE .. 108
8.2.2 BASIC DATA TYPES ...eiceiceeieeeeee ettt ettt a ettt ettt 109
BL2.3 SPEED ... 109
B.2.4 ACC ... 110
B.2.5 ZONE ... e 110
8.2.0 CLOCK ...t 110
BL2.7 SOCKET ... s 110
B.2.8 INTERRUPT ..ot 111
B.2.9 LSSCAIE ... 111
B.2.10 LSTRIESN .. 111
8.2.11 ViDratiONSUPDPIESSION ...ttt ettt ettt sttt st 111
L2102 IMIAEIIXZ .. 112
81213 IMIAEIIXS ..ot 112
8214 IMMAETIXA ..o 112
8.2 15 IMIAEIIXD ..o 112
Chapter 9 CaliDratioN ...ttt sttt 112
9.1 JOINT COONTINATE SYSTEM ...ttt ettt 112
9.2 WOrld COOMINGTE SYSTEIM ...ttt 113
9.3 Coordinate System and CaliDratioN ..ot 114
9.3.1 Three-point calibration METNOAc.ooiieee e 115
9.3.2 Use the User COOrdiNGTe SYSTEMttt 117
9.4 TOOIS N CalIDIATION ... s 118
9.4.1 Four-direction calibration MEthOd ... 119
9.4.2 One-point calibration Method (ATHEUAE)c.cvovieeeeecee e 121
9.4.3 Use the to0l COOrdiNAte SYSTEIM ...t 123
Chapter 10 INStruCtion INTFOAUCTIONc.c.iviiee ettt enes 125
10.1 DisplaCemMENT INSTIUCTIONSciuiieiceeeee ettt ettt ettt sttt 125
F0.1.1 IOV s 125
10.1.2 IMIOVL oo 125
F0.1.3 MOVC .. 126
10,104 IMIOVCITCIE 1. 127
F0.1.5 MOVIREN ..o 128
10.1.8 MOVLREL ... 129
L0177 IMOVLSEAICI ... 130

Version V1.0 Copyright @ Estun Codroid 5

10.1.8 AQADO ... 131

ORI [1V OO UU TR 132
10.2 LOGICAI INSEIUCTIONSc.ocvce ettt sttt sttt 132
J0.2.1 GOTO oot 132
10.2.2 1 132
10.2.3 BISBIF o 133
10.2.4 OTNEIWISE ... 134
10.2.5 WITE oo 134
10,28 T e 135
10.2.7 RETURN ..o 135
100.2.8 CALL ot 136
100:2.9 RUN e 136
110:2. 0100 KILL 1t 136
L0.2.00 LADEING oottt 136
10.3 FIOW CONIOI INSTIUCTIONS ... 137
J0.3.1 WIS 137
10.3.2 WAIFINISN ... 137
10.3.3 WAITCONAITION ... 137
10.4 TO INSTIUCTIONS ...t 138
T0.4.1 SEEDIO ... 138
100.4.2 SEEAD ... 139
10.4.3 WD ... 139
1044 WAIDIBA2L ... 140
J0.4.5 WAL .. 141
10.4.8 GEIDIBAZL ... 141
1O.4.7 GEIDOBAZL ... 142
10.4.8 SEEDOBAZL ... 142
10.4.9 GEEDO ... 143
10.4.10 GEIDI ..o 143
J0.4.11 GEEAD .o 143
F0.4.12 GEEAI .o 144
L0.5 SEE INSIIUCTIONS ...ttt 144
J0.5.1 SEETOON ... 144
10.5.2 SEECOONM ... 145
10.5.3 SEEPAYIOAM ... 145
J0.5:4 SEOP oo 145
10,55 EN@VIOIASUDDI ettt 145
L0.5.6 DISVIDIASUDPPDI ..ottt ettt ettt s s sen e anans 145
10.5.7 CISDECILEVEL ... s 145

Version V1.0 Copyright @ Estun Codroid 6

10.6 Position Operation INSTIUCTIONS ..ottt 146

L0.6.1 GEECUIAPOS ... 146
10.6.2 GELCUITPOS ... 146
10.6.3 APOSTOCPOS ..ottt 146
10.6.4 CPOSTOAPOS ..ottt s 147
10.6.5 CPOSTOCPOS ...t 148
10.6.6 TOOIOFSEE ..ot 148
L0.6.7 USEIOTISEE ... 149
L0.6.8 CPPOSOTSEL ...ttt sttt 149
100.8.9 GELAXIS ...ttt 150
10.6.10 GOLCAITESIAN ... 150
10.6.11 POSITION INVETISE ... 151
10.6.12 POINTSDISTANCEcvvviiii s 151
10.6.13 INLEIPOIATIONCPOS ..ottt 152
10.6.14 TranSTOIMPIANE ... 152
10.6.15 GetTrajSTartPOINTc.o ittt ettt 153
10.6.16 GEITIaJENAPOINToiieieeeeeee ettt ettt 154
10.7 Bitwise Operation INSTIUCTIONS ..ottt 154
F0.7.0 BITANG . 154
F0.7.2 BIEINEQG oo 154
J0.7.3 BITOT 1o 155
JO.7.4 BITLSH ... 155
F0.7.5 BIERSH .. 156
10.8 CIOCK INSEIUCTION ...t 156
J0.8. 1 CLKSEAIT 1.ttt 156
10.8.2 CLKSEOP .ottt 156
10.8.3 CLKRESEL ..ot 157
10.9 SOCKET COMMEANG ... 157
10.9.1 SOCKETCIRATE ...ttt s 157
10.9.2 SOCKELCIOSE ...t 158
10.9.3 SOCKEESENASEI ...t 158
10.9.4 SOCKEISENAREA ... 158
10.9.5 SOCKETSENAINT ... 159
10.9.6 SOCKETREAAREA ...t 160
10.9.7 SOCKETREAAINT ... 161
10.9.8 SOCKETREAASEE ...t 161
10.20 INEEITUPT INSEIUCTION ...ttt 162
L0101 TCONNECT ... 162
LO.10.2 IDEIETE ... 162

Version V1.0 Copyright @ Estun Codroid 7

F0. 003 TTIMIET 1o 163

10,104 TCONAITION ottt 163
10.11 MOADUS COMMEBNTS ...t 164
10.11.1 GEtMOACONSEATE ...t 164
10.11.2 REAASINGIECOIREG ..ottt 164
10.11.3 ReadDiISCreteINPDUIREG . co.vcei et ene s, 165
10.11.4 ReadSINGIEHOIAREG ..ottt 166
10.11.5 REAAINDULREG ...vieiiiei ettt 166
10.11.6 WIEESINGIECOIREG ... ettt 167
10.11.7 WIEESINGIEHOIAREG ..ottt et 168
1012 Array INSITUCTIONS ...ttt ettt sttt ettt n ettt 168
10,12, 1 SEEIMIALTIXZ ..o 168
10.12.2 SEEIMIALTIXS ..o 169
10.12.3 SEEIMIALTIXA ... 170
10.12.4 SETMAEIIXO ..ot 171
10.12.5 GEIMALTIXZ ... 173
10.12.6 GEIMALTIXS ..o 173
10.12.7 GEIMALIIXA ... 174
10.12.8 GEIMALIIXT ... 175
10.13 SEFNG INSTIUCTIONS ...ttt 175
L0 13,1 APOSTOSEE .o 175
J0.13.2 CPOSTOSI ...ttt 176
10:13.3 DAPOSTOSTT ..ot 177
100. 134 DCPOSTOSIT ..ot 177
10.13.5 TranSIITOINTAITAY ..ottt 178
10.13.6 TranSTITOREAIAITAYovuiii et 179
L0, 18,7 TrANSIITOADPOS ..ottt ettt ettt ettt ettt ettt ettt 179
10.13.8 TraNSIITOCPOScovvteeete ettt ettt ettt et sns 180
10.13.9 TranSIITODADOS ..ottt ettt en e 181
10.13.20 TranSIITODCPDOS ... ceeeeeieieieiei ittt ee s ees e ee st es e en s ee s e s en st en s en s en s ensesenseens 182
LO.13.10 INTAITAYTOSIIING coceroie ettt ettt en st en sttt en st en st en st en st en st anens 183
10.13.12 REAIAITAYTOSIIING .ottt ettt 183
10.13.13 BOOIAITAYTOSIIING ...oceeetceeeeee ettt tans 184
10.14 RSABS INSEIUCTIONS ...ttt 184
J0. 141 RSABOINIT oot 184
10.14.2 RSABOREAM ... 185
10.14.3 RSABEWVIILE oot 186
10.14.4 RSAB5FIUSNREAABUTTET ... 186
10.15 Mathematical Operation fUNCLIONS ..ottt 186

Version V1.0 Copyright @ Estun Codroid 8

J0. 150 SIN et 187

J00.15.2 COS oot 187
J0:15.3 8N iR 187
J0. L1514 @SIN i 187
JO.L15.5 @C0S ..ueuirtitittt s 187
J0.15.8 @AM oo 187
J0.15.7 @TANZ oo 188
10.15.8 SN o 188
F0.15.9 COSN . 188
FO.LI5.00 TANN oo 188
J0.15. 10 TOQ ittt 188
J0.15. 12 TOGLO e 188
J0. 15,13 SO ettt 189
J0.15. 14 BXPD e 189
J0.15. 15 POW oottt 189
L0, L5068 AEQ ettt ettt ettt aes 189
JO.L5. 17 TAA e 189
F0.15. 18 FMIOA ... 189
J0.15. 19 FIOOT 1o 190
L0.15.20 FANAOM ..ottt 190
10,16 SEHNG FUNCLIONS ..ottt ettt senenas s en e 190
J00.16. 1 DYLE e 190
F00.16.2 AT o 190
F0.16.3 FINAZ 190
10.16.4 FINAENG .. 190
FO.16.5 FOMMIAT ettt 191
L0, 168.6 GEEAL .o ettt ettt ettt 191
LO.L6.7 GSUD oottt 192
J0.16.8 TN 1. 192
J0.16.9 LT oo 192
FO.16. D0 TOWET 1. 192
J0.16. 10 FIGNT e 192
JO.L16.12 FBVEISE ... 193
L0, 16,13 STICIMIP ottt ettt ettt ettt ettt s ettt ettt n s 193
10.16. 14 TIMLETT .o 193
10.16.15 TrMRIGNT oo 193
LI G T G T] 0 o= ST SPTSTTOTUTTTT 193
J0.16. 17 TTOSEE .ot 193
10.16. 18 RTOSEE oottt 194

Version V1.0 Copyright @ Estun Codroid 9

F0.16. 19 STITON i8££ 194

100.16.20 SEITOR oo 194
LO.16.21 APPENG ..ttt 194
APPENIX TO CRAPLET L.ttt ettt ettt 195
LI T EITOE COUES ..t 195
11.2 USer LeVelS aNd PEIMMISSIONSc.iviiiiriirieieieiet st 199
113 DIECIATATION ... 201
Chapter 12 SPAre PArtS LIStccioiiioeeeeeeeeceee ettt 203
Chapter 13 Contact INFOMMAtIONoiceeeeeeee ettt neean 204

Version V1.0 Copyright @ Estun Codroid 10

Chapter 1 Preface

1.1 Safety

Thank you for purchasing and using our company's robot, it only passed two functional safety
certifications of EN ISO 13840-1:2023:

1. the performance level of the emergency stop circuit for the above model of robot is PI d.
2. the nennrmance level of the protective stop circuit for the above model of robot is maximum PL

d.

1.2 Nameplate

You can find information such as the model of the robot on its arm.

ESTUNN N A\ A

C @@ dDROI

RLT L
Name :Robots] H
Model :520-180 Pro Reach: 1777mm

Date: 01/11/2024 Weight: 5%kg
SN: 5021000100 Payload: 20kg
PN: 1409060003 Degree of Freedom: 6

Main File No.: 520180PR0O00

Nanjing Estun Codroid Technology Co.,Ltd.
§/F,Building 1,Jiangning Double Innovation Base,National University Science Park Southeast
No.33, Road ing District,Nanjing,211102 Jiangsu,P.R.China

Figure 1-1 Robot Arm Nameplate

You can find information such as the model of the control cabinet on the control cabinet itself.

ESTUN A A

C® RO

-t

Name: ControlCabinet]
Mode : COCB-A20-20 POWER : 3000W

Date : DD/MM/YYYY Weight : 14kg

SN eRckbiclok Frequency: 50/60Hz

PN . sopkRrRolek Main File No: COBA202000
Enclosure Type: P20 Input Voltage: 1PH AC100-240V

Ful l-Load Current: 17.5A (AG230) Short Circuit Rating: 100A
Nanjing Estun Codroid Technology Co.,Ltd

5/F Building 1,Jiangning Double Innovation Base,National University Science Park,Southeast

University,Mo.33,Southeast University Road Jiangning District,Nanjing,211102 Jiangsu,P.R.China

Figure 1-2 Control Cabinet Nameplate

1.3 How to Use This Manual

This manual describes the hardware composition of the Codroid robot and the operation of its
teaching control system, which is helpful for users to understand and master the functions,
technical specifications, installation and usage of the Codroid robot.

This manual is applicable for customers, sales engineers, installation and commissioning engineers,

Version V1.0 Copyright @ Estun Codroid 11

technical support personnel, etc.

This manual contains methods on how to protect users and prevent machine damage. Users need
to read all relevant descriptions in the manual and be fully familiar with the safety precautions.

In this manual, we have tried to describe various situations. However, due to the vast number of
possibilities, it is impossible to record all the situations that should not be done or cannot be done.

1.4 Copyright and Trademark

Estun CoDroid, CoDroid, CoDroid EIP, CoBrain, CoDrive, CoSense, CoSafe, CoTool are registered
trademarks of Estun CoDroid. All rights reserved @ Nanjing Estun CoDroid Technology Co., Ltd.

Without the written permission of the Company, no unit or individual may excerpt, copy in part or
in whole, or disseminate the content of this document in any form.

1.5 Disclaimer of the Manual

Before using this product, please read this user manual and the relevant technical documents
published online in detail and understand the information. Make sure to use the robot only after
fully understanding the robot and related knowledge. We recommend that you use this manual
under the guidance of professionals. All safety information contained in this manual shall not be
regarded as a guarantee by Codroid. Even if you follow this manual and related instructions, harm

or loss may still occur during use.

1.6 Common Terms

1.6.1 Robot

Fixed or mobile automatic machinery that can be automatically controlled, repeatedly
programmed, multi-purpose, and programmed for three or more axes, used in industrial

automation.

1.6.2 Maximum workspace

The space that the robot's moving parts can sweep through, plus the space that can be swept by
the end effector and the workpiece during their movements.

1.6.3 Precision

The deviation of position and attitude between the average value of the commanded distance and
the actual distance.

1.6.4 Repeatability accuracy

Version V1.0 Copyright @ Estun Codroid 12

The consistency of the actual distance reached after repeating the movement in the same direction

for the same instruction distance n times.

1.6.5 Trajectory accuracy

The maximum trajectory deviation along the obtained trajectory in terms of position and

orientation.

1.6.6 Trajectory repetition accuracy

The consistency of the actual trajectory when a robot repeats the same instruction trajectory n
times.

1.6.7 Tool Center Point (TCP)

Points set for a certain purpose with reference to the mechanical interface coordinate system. (Ref.
GB/T 12643-2013, Definition 4.9)

1.6.8 Payload

It refers to all the loads attached to the robot flange excluding the weight of the tool.

1.6.9 Protective stop

A form of operation interruption that allows for the orderly termination of a process for safety

reasons while maintaining the program logic to enable a restart.

1.6.10 Singularity (Singular Point)

The situation where two or more axes of a robot are collinear, resulting in uncertainty in the robot's
motion and speed.

1.7 Revision Record

Material Version Release Data | Description
Number
1210002200 V1.0 20250401 Initial version

Version V1.0 Copyright @ Estun Codroid 13

Chapter 2 Safety Information

2.1 Validity and Responsibility

The information in this manual does not cover the design, installation and operation of a
complete robot application, nor does it include all the peripheral equipment that may
affect the safety of this complete system. The design and installation of the complete
system must comply with the safety requirements established in the standards and
regulations of the country where the robot is installed.

Estun Codroid integrators are responsible for ensuring compliance with applicable laws and
regulations of the relevant countries and ensuring that there are no significant hazards in
the complete robot application. This includes but is not limited to the following:

Conduct a risk assessment of the entire robot system.

Connect other mechanical and additional safety devices defined in the risk assessment

together.
Make appropriate security settings in the software.
Ensure that users cannot modify any security measures.

Confirm that the design and installation of the entire robot system are accurate and error-

free.
Good understanding on this instruction
Mark the relevant logos and contact information of the integrator on the robot.

Collect all the documents in the technical files; including the risk assessment and this
manual.

2.2 The warning symbols appointed in this manual

The following safety warning signs may appear in this manual. Their meanings are as

follows:

Warning

This sign indicates a potentially dangerous electrical situation. If not
avoided, it may cause death or serious injury to personnel or severe
damage to equipment.

Warning

This sign indicates a potentially dangerous situation. If not avoided, it
may cause death or serious injury to people.

Version V1.0 Copyright @ Estun Codroid 14

Warning

This sign indicates a potentially dangerous electrical situation. If not
avoided, it may cause personal injury or severe damage to
equipment.

Warning

This sign indicates a potentially dangerous situation. If not avoided, it
may cause personal injury or serious damage to equipment.

Warning

This sign indicates a potentially dangerous electrical condition. If not
avoided, it may cause personal injury or serious damage to
equipment.

Warning

This sign indicates a potentially dangerous hot surface. Contact with it
may cause personal injury.

Warning

This symbol indicates a situation that, if not avoided, can lead to
serious damage.

> DD D P

2.3 Safety Precautions

Make sure that the robot arm and the tool/end effector are both correctly and
securely fastened in place with bolts. Ensure that the robot arm has sufficient space
to move freely.

Ensure that the safety measures and/or robot safety configuration parameters as
defined in the risk assessment have been established to protect programmers,

operators and bystanders.

When operating the robot, please do not wear loose clothing or jewelry. Make sure
long hair is tied back when operating the robot.

If the robot is damaged, do not use it, for example, when the joint cap is loose,
damaged or removed.

Never put your fingers into the control box.

Do not connect any safety devices to the standard 1O interface. Only the safety IO

interface can be used.

Ensure correct installation settings (such as the installation angle of the robot, the

weight in TCP, TCP offset, and safety configuration).

Only after a risk assessment is conducted can the drag-and-drop teaching function
be used during the installation process.

Version V1.0 Copyright @ Estun Codroid 15

The tools/end effectors and obstacles must not have sharp corners.

Ensure that people are warned to keep their heads and faces out of the reach of
robots that are in operation or about to start operating

When using the teaching pendant, pay attention to the movement of the robot.

If a risk assessment has been determined, do not enter the safe confines of the robot
or touch the robot while the system is in operation.

Connecting different machines may increase the risk of danger or cause new hazards.

Always conduct a comprehensive risk assessment of the entire installation.

Do not modify the robot. Any modification to the robot may cause unpredictable
dangers. Any authorized reconfiguration of the robot must be carried out in

accordance with the latest version of all relevant service manuals.

Ensure that robot users are aware of the location of the emergency stop button and

are instructed to activate it in case of an emergency or abnormal situation.

The robot and the control box will generate heat during operation. Do not touch the
robot when it is running or has just stopped. You can cool down the robot by

turning it off and waiting for one hour.

When the robot is connected to or works together with machinery that could cause
damage to the robot, it is strongly recommended to test all the functions of the
robot and the robot program separately.

Do not expose the robot to magnetic fields, fire, explosive hazards, radio
interference, liquids, etc. for an extended period of time, as this may damage the
robot.

The robot system is not permitted to be used in explosive or potentially explosive
environments.

When the equipment is in operation, even if the mechanical arm appears to have
stopped while waiting for a start signal, it should still be regarded as in motion.
Please do not approach the mechanical arm.

During the processes of transporting, installing, operating and maintaining robots,
operators must wear safety gloves, glasses, anti-crush shoes and other safety
protective equipment to avoid dangerous injuries.

2.4 Safety Requirements

The safety functions generally comply with the ISO 10218-1 standard, and specifically
meet the following requirements.

When safety-related control systems are required, the design of safety-related
components should be such that:

The failure of any single component will not result in the loss of safety functions.

Where practicable, a single fault shall be detected before or at the next demand on

the safety function.

Version V1.0 Copyright @ Estun Codroid 16

When a single fault occurs, the safety function should always be in operation and
maintain a safe state until the detected fault is repaired.

All reasonably foreseeable faults should be detected.

This requirement is regarded as equivalent to the Category 3 structure as described in
ISO 13849-1. Category 3 is typically achieved through redundant circuits. The safety
function and the robot controller comply with Performance Level (PL) d as stipulated in
ISO 13849-1.

2.5 Safety Disclaimer

This manual does not provide comprehensive information on the design, installation and
operation of the robot in conjunction with other equipment, nor does it cover the
possibility of the impact of such use on surrounding equipment.

The safety of a robot installation depends on how the robot is integrated, and the
integrator needs to conduct a risk assessment of the design and installation of the system
in compliance with the laws and regulations of the country where it is installed, as well as
safety codes and standards.

Risk assessment is one of the most important tasks that an integrator must complete. The

integrator can refer to the following standards to carry out the risk assessment process:

ISO 12100:2010 Safety of machinery - General principles of design - Risk assessment
and risk reduction;

ISO 10218-2:2011 Robots and robotic devices - Safety requirements - Part 2:
Industrial robot systems and integration

RIA TR R15306-2014 Technical Report on Industrial Robots and Robot Systems -
Safety Requirements, Task-based Risk Assessment Method

ANSI B11.0-2010 Machinery Safety; General Requirements and Risk Assessment.

2.6 Limitation of Liability

Any safety information contained in this manual should not be regarded as a guarantee
for our company's robots. Many matters cannot be described in detail, and there is still a
possibility of causing injury or damage.

Our company is committed to continuously improving the reliability and performance of
our products and reserves the right to upgrade the products without prior notice. We are
not responsible for any errors or omissions in this manual and reserve the right of final
interpretation of this manual.

2.7 Stop category

Type O Uncontrolled stop, which stops the robot by immediately
disconnecting power to the actuator.

Type 1 Controlled stop, where the actuator actively brakes but does not

Version V1.0 Copyright @ Estun Codroid 17

ensure that the robot stops on its trajectory. After the robot has
stopped, the power supply is cut off.

Type 2 Controlled stop, where the actuator actively brakes and ensures that
the robot stops in its trajectory. The robot stops without
disconnecting the power supply.

In accordance with the IEC 60204 -1 standard, Codroid robots are equipped with three
stop categories, namely Stop Category 0 (Cat.0), Stop Category 1 (Cat.1), and Stop
Category 2 (Cat.2). Among them, Stop Category 0 is an uncontrolled stop, while Stop
Categories 1 and 2 are controllable stops.

According to IEC 60204-1 and ISO 13850, emergency equipment is not a safety guard
device. They are supplementary protective measures and are not used to prevent
injuries.

In case of an emergency, press the emergency stop button to immediately halt all
movements of the robot and lock it in place. The emergency stop function should not

be used as a risk reduction measure but can be regarded as a secondary protection
device for use only in critical situations.

Under normal circumstances, if it is necessary to stop the robot's movement, please use
other methods. After a risk assessment, if an emergency stop button needs to be
installed, it must comply with the requirements of IEC-60947-5-5.

When the emergency stop button is pressed, the robot system will cut off the power
supply to the robot, and the brake devices between the robot's joints will automatically
lock the joints. However, due to the effect of gravity, slight movement of the robot body
is @ normal phenomenon, but this may also pose a risk of pinching or colliding with the
human body.

The implementation of the stop category relies on the joint driver, for further
description, refer to IEC 61800-5-2.

Emergency stop and protective stop functions are implemented through the safety
interface. For details, please refer to Section 5.3.2.

2.8 Risk assessment

Before installing or using this product, users must conduct necessary risk assessments
based on the usage conditions and carefully read the residual risks that may exist in the
company's stated values. For relevant content, please refer to the corresponding
software and hardware version manual.

2.9 Safety function

The safety functions of the CoDroid robot are shown in the following table.

Safety function Description

Emergency stop When the emergency stop button is pressed, stop category 1 is
activated.

Protective stop When the relevant signal input is low, activate stop category 2. this

Version V1.0 Copyright @ Estun Codroid 18

function needs to be manually reset.

Safety rated deceleration
control

When the correlation signal input is low, it will reduce the TCP
speed to the limit.

Joint position limitation

Sets the limit range of allowable joint positions.

Joint speed limitation

Sets the limit range for the allowable joint speed.

Joint torque limitation

Sets the limit range of allowable joint torque.

TCP location Limitation

Sets the limit range of allowed TCP locations.

TCP speed Limitation

Sets the maximum TCP rate.

TCP torque limitation

Set the maximum torque of TCP.

Robot Power Limit

Limit the maximum power of the robot.

TCP Directional Limit

Sets the direction limits allowed by the tool.

Security-grade monitoring
downtime

When the relevant signal input is low, activates Stop Category 2.
This function can be reset when the relevant signal input signal is
low.

Speed and distance
monitoring

Maintain a minimum protective distance between the operator and
the robot. The robot system stops when the separation distance
decreases below the protective distance. The robot can
automatically resume motion when the operator leaves the robot
system.

Power Torque Limit

Limit the maximum power and torque of the robot.

2.10 Emergency stop recovery

When the emergency stop button is pressed, it will be locked. To unlock it, rotate the

button as indicated on it. Only after unlocking can the alarm be cleared through the

control software, and then power on and enable to restore from the emergency state.

2.11 Forced drive without power

In case of an emergency, if it is necessary to move the robot's joints but it is impossible
or unnecessary to power on the robot, manual forced drive without power can be used.

To perform a no-power forced drive, you must push or pull the robot arm forcefully to
move the joints. Each joint brake has a brake that allows the joint to move under high-
torgque conditions.

Manual movement without power drive is only for emergency situations and will affect
the service life of the brake device.

2.12 Stopping time and stopping distance

Provide reference stopping distance and stopping time data for joint 1 (base), joint 2
(shoulder), and joint 3 (elbow):

* Class O
e Class 1
e Class 2

The test for joint 0 is conducted through horizontal movement, that is, the rotation axis
is perpendicular to the ground.

Version V1.0 Copyright @ Estun Codroid 19

During the tests at joint 1 and joint 2, the robot followed a vertical trajectory with the

rotation axis parallel to the ground and performed a stop operation when the robot

moved downward.

The robot arm is fully extended horizontally.

The general speed of the robot is set at 100%, and it moves at the maximum speed of

the joints.

The maximum effective payload that the robot can handle.

The following table shows the measured stopping distance and stopping time of the 3kg

robot when it triggers a Class 1 stop under the above conditions. For test data of other

models, please consult our technical staff.

The following data is for reference only. Depending on the application scenarios and

usage conditions of the robot, the results of the stopping distance and stopping time

may vary.

Position Stopping distance (rad) Stopping time (ms)
Joint 1 (base) 0.30 282

Joint 2 (shoulder) 0.29 287

Joint 3 (elbow) 0.29 237

2.13 Storage, usage and transportation conditions

The ambient temperature during storage and operation should be between 0 and
40°C.

Places with less humidity and drier. Relative humidity of 10%-90% without
condensation;

Places with little dust, powder, grease fumes and water.
No flammable materials, corrosive liquids or gases are allowed in the work area.

For places where the vibration or shock energy on the electrical control cabinet is
small (vibration below 0.5G);

There should be no major electrical noise sources nearby (such as gas shielded
welding TIG equipment, etc.);

There is no potential risk of collision with mobile devices such as AGVs.

The control box should be installed outside the robot's operating range (beyond
the safety fence).

The control box should be at least 200mm away from the wall to keep the heat
dissipation channel unobstructed.

2.14 Control cabinet and body identification

The following signs and nameplates are attached to locations where specific dangers
may occur. To prevent accidents, please strictly follow the instructions and contents of

Version V1.0 Copyright @ Estun Codroid 20

the signs when operating. Do not tear, damage or remove the signs at will. Be especially
careful when handling the components or units to which the signs and nameplates are
attached and the surrounding areas.

A The equipment must be operated and maintained by
specialized personnel with personal protection.

Make sure to follow the hardware setup instructions. Avoid
using the product incorrectly and causing damage to the

machine or other equipment, or injury to personnel.

Do not open the control cabinet and body to touch the
internal electronics and circuitry to avoid electric shock.
There is a risk of fire or electric shock.

Always use appropriate personal protective equipment to
protect against the risk of arc flash, failure to follow this
code may result in personal injury or death.

Hot surfaces that can be hazardous and can cause injury if
contact occurs.

The robot body has a magnetic field inside, which may be
harmful to the body and electronic equipment.

Product nameplate to confirm basic product information

Figure 2-2 Labeling and Nameplate Position for Bodies Weighing 10kg or Less

Version V1.0 Copyright @ Estun Codroid 21

Version V1.0

Figure 2-3 20kg Body Marking, Nameplate Position

Copyright @ Estun Codroid

22

Chapter 3 Quick Start

3.1 Confirmation of packing contents

Before using the robot for the first time, the user needs to read
and understand the safety information in this manual and the safety
configuration parameters in the settings.

After the product arrives, please check the shipping list. A standard shipping list includes
the following five items (optional information will be provided separately). The robot
body and the control cabinet are packed in two separate boxes. The robot body
package only contains the robot body, while the control cabinet package includes the
controller body, hand controller, cables connecting the body and the controller, power
cables, etc.

Figure 3-1 Contents of the Carton

3.2 Robot installation

Version V1.0 Copyright @ Estun Codroid 23

3.2.1 Transportation

Keep the original packaging intact during transportation. Store the packaging materials

in a dry place; they may be needed for repacking and moving the robot later. Move the

robot from the packaging materials to the installation location:

When installing the robot arms of S3-60, S5-90 and S10-140, the two die-cast
connecting rods of the robot arm can be lifted simultaneously. Hold the robot until all

the installation bolts of the robot base are tightened. Please refer to 3.2.2 for handling.

When handling the S20-180 robot arm, please refer to 3.2.2 Handling.

WARNING

When moving and handling the equipment, the operator should
wear safety gloves, glasses, anti-smash shoes and other safety
protection equipment to avoid dangerous injuries during the
moving and handling process.

WARNING

- Ensure that no excessive weight is placed on the back or other
body parts when lifting the equipment. Use appropriate lifting
equipment.

Follow all regional and national lifting guidelines. Universal
Robots is not responsible for any damage caused by
transportation of the equipment.

- Ensure that the robot is mounted according to the mechanical
interface as described in 3.2.3 Mounting and 4.5 Mounting
Interface of these instructions.

- If the robot needs to be precisely positioned, it can be
positioned by pins through the two pre-drilled holes.

WARNING

- Ensure that the robot is mounted correctly and in a position that
avoids vibration.

- Turn off the power to the robot arm during mounting and
dismounting to prevent accidents.

Turn off the power:

- Return to the packing position during disassembly.

- Turn off the robot by pressing the power button on the
actuator.

- Disconnect the power plug.

3.2.2 Handling
WARNING
When moving and handling the equipment, the operator should
wear safety gloves, glasses, anti-smash shoes and other safety
protection equipment to avoid dangerous injuries during the
moving and handling process.

Version V1.0 Copyright @ Estun Codroid 24

3.2.2.1 Manner of handling robots weighing 10kg or less

a) Transportation and Unpacking

PR

Figure 3-2 Transportation and Unpacking Diagram for 10kg and blow

b) Install the lifting straps and use the hook to lift the robot arm.

Figure 3-3 Schematic Diagram of the Position of Lifting Straps for 10kg and Below
c) Installation
Figure 3-4 Installation Diagram for 10kg and Below

3.2.2.2 20kg robot handling method

a) Transportation and Unpacking

Version V1.0 Copyright @ Estun Codroid 25

Figure 3-5 20kg Transportation and Unpacking Diagram

b) 2. Install the lifting slings and use the hook to lift the robot arm.

Figure 3-6 Schematic Diagram of the Position of the 20kg Lifting Strap

c) Installation

Figure 3-7 Installation Diagram for 20kg Model

WARNING
Lifting or moving heavy parts may cause injury.
- Lifting equipment/lifting aids may be required.

WARNING

Incorrect assembly of components and/or wiring may result in
injury.

- Personal protective equipment (shoes, glasses, gloves) may be
required.

- Failure to use lifting devices appropriate for the weight of the
robot may result in injury to personnel and property damage.
Failure to use a lifting device appropriate for the weight of the
robot may result in injury to persons and damage to property.

- The lifting device should be capable of lifting a weight of 59 kg
(robot only).

- The lifting device should be able to lift 79 kg (robot and
payload).

Lifting sling usage: The lifting sling selected should comply with the following standards
under the premise of meeting the load of this product:

Version V1.0 Copyright @ Estun Codroid 26

European Standard:

* BSEN1492-1:2000 + A1:2008 Textile slings - Safety - Flat webbing slings, made of
man-made fibers, for general purposes.

*BS EN 1492-2:2000 + A1:2008 Textile slings - Safety - Round slings made of synthetic
fibers for general purposes.

Chinese standard:

* JB/T8521.1-2007 Safety of woven slings - Part 1: Flat web slings for general purposes
made of synthetic fibers

» B/T8521.2-2007 Safety of woven slings - Part 2: General purpose synthetic webbing
slings for round lifting

WARNING

Using a round sling without inspection may result in injury.
- Inspect slings before and after each use.

- If possible, check the slings during use.

WARNING

Using a damaged round sling may result in injury.

- Inspect slings before and after each use.

- Do not use if sling is cracked, torn or has loose stitching.
- Do not use if sling shows signs of heat damage.

- Protect slings from sharp edges and friction.

- Do not tie knots in the sling.

- If possible, check the sling during use.

3.2.3 Installation

WARNING

Before performing safety sensing on the equipment, confirm that
the operator needs to wear safety gloves, glasses, anti-smash
shoes and other safety protection equipment to avoid dangerous
injuries during installation.

Mount the robot arm using bolts of at least grade 12.9 strength and the mounting holes
in the base as shown. See Section 4.5 for robot base mounting dimensions.

The recommended installation torque is as follows:

[tem S3-60 S5-90 S$10-140 $20-180
Bolt M6 M8 M8 M12
Quantity 4 4 4 4

Flat washer ®6 ®8 ®8 ®12
Locating pin »4 ®6 »8 »8
Torque >=10N'm >=20N'm >=35N'm >=70N'm

The robot needs to be installed on a solid and vibration-free support surface. The

support must be capable of withstanding at least ten times the full torsional force of the

Version V1.0

Copyright @ Estun Codroid

27

https://cn.bing.com/dict/search?q=flat&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=washer&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=locating&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=pin&FORM=BDVSP6&cc=cn

first joint and at least five times the weight of the robotic arm.

Figure 3-8 Ontology Installation

The robot can be installed in any position and orientation, supporting various
installation methods such as overhead and side mounting. For non-vertical installations,
the installation angle of the robot needs to be set in the robot settings. For the
installation method of the robot body and the setting method of the installation angle

in non-vertical installations, please consult our technical personnel.
Cable Connections

Before powering up the robot, you need to connect the robot cables according to the
cable connection diagram in Figure 3- 9.

Network cable: connects the controller to the tablet for controlling the robot's

movements.

Hand controller: used for controlling the emergency stop, enabling and power on/off of
the robot.

Control cable: used to provide power and communication for the robot body;

Power cable: Provides power for the robot system.

WARNING

Before energizing the robot, check that the voltage and
frequency of the power supply meet the requirements; accessing
the wrong voltage can cause the robot to malfunction.

WARNING

A power cord is included in the package, but since single-phase
power outlets vary from country to country and region to region,
please purchase a power cable that meets the requirements
according to the customer's region.

Version V1.0 Copyright @ Estun Codroid 28

Tablet computer

Network cable

Hand exercise
device

Power cord

4

Control wire

D

2\t *—*I

Figure 3-9 Schematic Diagram of Cable Connections

3.2.4 Operation position layout

The positions of the operator, the robot body and the control cabinet equipment are as
shown in the operation position layout diagram in Figure 3-10.

Suggestion: When the robot is in operation, the operator should stand outside the reach
of the robot's arm to ensure personal safety.

This robot is equipped with a collision detection function and complies with the I0S/TS
15066:2016 standard.

Refer to the content described in Section 4.2 on the workspace to ensure that the
operator operates the robot outside the robot's workspace area. Do not operate the
robot when there are people inside the robot's workspace area.

Refer to the content described in Section 4.7 for the placement of the control cabinet.
Ensure that the control cabinet is installed in a well-ventilated, flat and vibration-free
environment.

WARNING

Before energizing the robot, check that the voltage and
frequency of the power supply meet the requirements; accessing
the wrong voltage can cause the robot to malfunction.

Version V1.0 Copyright @ Estun Codroid 29

__?e’_??i Control cabinet

noumenon

Control cabinet

Figure 3-10 Layout Diagram of Operating Positions

3.3 Start using

After completing the above tasks, you can start using the robot.

3.3.1 Power on and start up

When the robot cables are properly connected, power on the system and turn on the
switch at the power connection of the controller. At this point, you can hear the
controller's fan start working. Then press the power-on button on the front of the control
box. The button will turn green and stay lit, indicating that the control box has been
powered on.

2. Wait until the light strip at the end of the robot turns into a constant white light and
the small screen at the end of the arm shows "Communication [Real-time]" and
"Operation [Normal]". This indicates that the controller has been successfully started and
the robot body has established communication with the controller. At this point, you can

log in to the web page to control the robot.

3. Turn on the tablet and modify its static IP address to 192.168.101.XXX through the
settings.

4. Open the browser and enter the robot's IP address: 192.168.101.100:9098 in the
address bar. Press Enter to jump to the login page as shown in Figure 3-11. If you cannot
jump to the login page, please check the IP address of the tablet. If you still cannot

Version V1.0 Copyright @ Estun Codroid 30

access the login page, please contact the after-sales service personnel.

Figure 3-11 Login Page

5. You can log in to the control page by entering your account and password. The initial
accounts and passwords available for use are as follows. Different accounts have
different permissions. For details, please refer to the appendix.

Account Password
User 123456
Admin 123456

6. After logging in, you can jump to the robot control page, at this time you can carry
out the power-up operation, before powering up, you need to make sure that the
emergency stop button on the hand manipulator has been reset, and there are no
people and equipment within the robot's range of motion. Click the button

Power On
“ power on” in the “3D Simulation” view, as shown in Figure 3-12 Robot

Control Interface, you can hear the sound of the brake release at the joints, indicating
that the joints are powered up.

SETTING RECORD MANAGE | 2 admin . o

BY CODROID v1.81

Figure 3-12 Robot Control Interface

7. As shown in the main interface of Figure 3-13, it indicates that the robot has been
powered on successfully. Now, you can control the robot to move.

Version V1.0 Copyright @ Estun Codroid 31

TTING RECORD MANAGE (2 admin . H

Figure 3-13 Main Interface

3.3.2 Write a program

In manual mode, the robot can perform joint jogging and end-effector jogging.

Joint point movement: It enables the control of the robot to perform single-joint
movements. The speed of point movement can be adjusted manually by changing the
speed ratio. al, a2, a3, a4, ab, and a6 respectively represent the six joints of the robot.

Endpoint jogging: It enables the control of the robot's movement in the Cartesian
coordinate system. The jogging speed can be adjusted by changing the manual speed
multiplier. The reference coordinate system during the robot's movement can be
changed by switching between the current coordinate system and the tool coordinate
system. x, y, and z represent the directions of the three axes of the reference coordinate
system, while a, b, and ¢ represent rotations around the X, y, and z axes of the reference
coordinate system, respectively.

a) In manual mode, control the robot to move to the target point.

b) Click * il pose”, click to record a point P1;

c) Jog the robot to another position and repeat steps 1 and 2 to add the second

point, as shown in Figure 3-14.

SETTING RECORD MANAGE | £ sdmin . bus

Version V1.0 Copyright @ Estun Codroid 32

Figure 3-14

d) Select "®UEMH jogging” in the left instruction column and click or directly drag

and drop instruction to add a motion instruction to the right program
tree;

—> MovlL
“-” i i “ ATTR "
e) Select : in the program tree, click parameters”,

the corresponding parameter column of the instruction will appear, the target

position select the point P1 set just now, and the target speed select the
system default V100, when the instruction parameter page doesn't show the
red error word, it means that the setting of the instruction is completed;6.
Repeat Step 5 and add another instruction with its parameters set.

f) Repeat step 5 to add another command and set the parameters.

[l Logic

g) 7.Add the “IE
the program.

" instruction from logic” and drag it to the first line of

=L
h) Adding the 888" instruction in "

Start allows the program to run continuously and repeatedly, as shown in

logic” and selecting the jump node as

Figure 3- 15 below.

ESTUN

Figure 3-15

i) Click @ to save the program, there will be a pop-up when it is saved;

Switch to
j) Click and select OK to switch the robot to automatic mode

k) Click m to select Auto Execute and the robot will move from P1 to P2.

l) Select and confirm to switch the robot to automatic mode.

Version V1.0 Copyright @ Estun Codroid 33

m) Click on ' to pause the robot program and the robot will pause its
movement at the same time.

n) After the robot has paused, click on . to resume running the robot
program.

o) Clicking on . will stop the robot program and the robot will stop moving.

p) If the robot is manually moved or stopped after the program has been paused,
it will need to be switched to manual mode first, and then switched to

automatic mode again after robot [point to contins] move to running

resume point to continue running” before the program can continue to run.

3.3.3 Power off

4 shut down” and
the robot powers down, then press and hold the power button on the controller until the
always-on green light goes out to release the button.

Adjust the robot's attitude to the proper position, click “

Version V1.0 Copyright @ Estun Codroid 34

Chapter 4 Mechanical Hardware and Installation

4.1 Robot composition

The Codroid S series robot features six rotating motion joints, a large arm and a small arm

as connecting rods. The base of the robotic arm is equipped with an aviation plug, the end

of the robotic arm is equipped with a button and an indicator light, and the side of the

tool flange is equipped with a button, a screen and an aviation plug.

E

+—— End<’

J5¢

+——— Big link¢

J2e
J1e

Aviation plug# +——— Base<!

Figure 4-1 Composition of S Series Robots

4.2 Work Space

When choosing the installation location for the robot, it is essential to consider the

cylindrical space directly above and below the robot. It is necessary to avoid moving the

tool towards this cylindrical space, as doing so would lead to entering the singularity point,

causing the joints to move too fast during operation. This would result in low robot

efficiency and make risk assessment difficult.

WARNING

When the robot is operated in manual mode (taught), personnel
should be outside the safe guarding space.

The emergency stop button of the robot hand manipulator must
be within reach in manual mode, and at least one emergency
stop switch needs to be set outside the robot's range of motion.
The robot's range of motion is the maximum range of motion of
the body when the robot does not have any motion limits set.
Robot movement limits can be set so that all operations do not
fall outside the maximum range of motion of the robot body.

Version V1.0

Copyright @ Estun Codroid 35

(Y]]
123.5 108 [SR575.8

Fi

i
=l (el @ o
) !
w i
1
166.5 164
I
. ©
5 - x|
I i
- o]
155
= E’ :‘
8 182
S
N S

1701 | @160

Figure 4-3 Dimensions and Working Space of $5-90

Version V1.0 Copyright @ Estun Codroid 36

Figure 4-5 Dimensions and Working Space of S20-180

4.3 Load curve

The maximum allowable payload of a robotic arm depends on the offset of the center of
gravity. When the distance of the load's center of gravity increases, the load that the robot
can bear decreases. According to the eccentric distance of the load, with the eccentric
distance on the XY plane as the ordinate and the value of Z as the abscissa, find the
corresponding coordinate point of the eccentric load. Observe under which curve this

Version V1.0 Copyright @ Estun Codroid 37

point lies. The load indicated by that curve is the maximum load that the robot can bear

under the current working condition.

The total load of the tools and workpieces loaded at the end of the robot must not

exceed the maximum load.

WARNING

When calculating loads, the weight of the media flange must be
included and ensured to meet the robot's load specifications.
Ensure that the system never exceeds the maximum allowable
load. The user should carry out a full risk assessment of the media
flange and the workpiece to avoid shock, vibration, crashing,
entanglement, puncture, puncture and other hazards. Ensure the
overall safety of the system.

Lxy/m R
0.7 . . -
061056 ... 15kg
05
0.40 2k
04 === i
~ s
~
0.3} s o 1
0.24 kg \
A Y 1
0.2} \ 1
0.1 v
| I\o.zz 030 | ios54

0041 02 03 04 05 06 07 zm

106 mm

3.3 mm

Y

igure 4-6 Payload Curve of S3-60

Version V1.0 Copyright @ Estun Codroid 38

Lxy/m

Version V1.0

Copyright @ Estun Codroid

0]1\
06 -
0.52 1.5kg
Y St —— .
0.4
0.31 3kg
03F==T="="%
N\
\
0.2} "
012 5k
0.1 — 9 \ ..
\0-12. ' 0.31 i 0.52 -
y 0 01 02 03 04 05 06 07 zm
£ S
E 1
3 ‘ L
- - 16p.5 mm
_ s _ /,_
% !
Figure 4-7 Payload Curve of S5-90
... 6kg
. 8kg - 1
10kg s
I |
A%
\
i ‘ 1 -
0.16 'I 0.24 0.37
e) 0.1 0.2 0.3 0.4 0.5 zim
E L
- |
= / 15p.5 mm
{5 K/'
_ﬁr !
Figure 4-8 Payload Curve of S10-140
39

Lxy/m A
0.5 : : .
0.45
0.4 Lo.37 i | 1
035" . TN
03028 .
0.25}9 22 S

0_5> z/im

161.5 mm

= 165 mm

Figure 4-9 Payload Curve of S20-180

4.4 Flange interface

The end flanges of the S series robotic arms all have the same size. Each flange has four
M6 threaded holes, which can be used to attach tools to the robot. The flange design
complies with the national standard GB/T 14468.1-50-4-M6 (or ISO 9409-1-50-4-M6).

The M6 screws must be tightened with a torque of 12Nm, and their strength grade is 12.9.
To accurately reposition the tool, please use a pin in the reserved @6 hole to maintain the
precise position. The screw insertion depth for installing the tool must not exceed 8mm.

Version V1.0 Copyright @ Estun Codroid 40

+0.012

& QO6H 0 T6

£ X NE—BH 10 EQS

+0.012
S Q6H 0 T

Figure 4-10 Mechanical Installation Interface of S3-60 Pro and Eco Flange

Version V1.0 Copyright @ Estun Codroid 41

+0.012
s GOHT 0 TS

4 x Mo—6H 10 EQS

(

+0.012

N GEHT 0 T6

Figure 4-11 Mechanical Installation Interface of S5-90 Pro and Eco Flange

Version V1.0 Copyright @ Estun Codroid 42

NS 40,012

Q6 Hl o T0

4 X M6—6HT 10 EQS

e \ &
N
()

‘/.'
I

@_/@ ’7

Figure 4-13 Mechanical Installation Interface of S20-180 Pro and Eco Flange

4.5 |Installation interface

)
4x 6.6 EQS
3

+0.024
- @4 FG8 +0.006

w%

%3

&

= @ 145

4— @9 EQS

(@}

+0.024
@6 FG8 +0.006

+0.024

6 FG8 +0.006

Figure 4-14 Mechanical Installation Interfaces of the Base for S3-60 and S5-90

Version V1.0 Copyright @ Estun Codroid 45

4= 9 EQS == Al

0.03
@8 FG8 10,008

+0.03

8 FG8 +0.008

=T Y @222
)]
4~ @13 EQS 7
\ R

)
e

£0.03 '

@8 FG8 +0 008

+0.03

§ FG8 +0.008

Figure 4-15 Mechanical Installation Interfaces of the Base for S10-140 and S20-180

4.6 Robot Specification

Version V1.0 Copyright @ Estun Codroid 46

Model S3-60 S5-90 S510-140 S520-180
DOF 6

Payload (kg) 3 5 10 20
Reach (mm) 575 919 1400 1777
Repeatability (mm) | +0.03 +0.03 +0.05 +0.1
Weight (kg) 18 22 38 59

Certification

EN ISO 13849-1 PLd Cat.3 & EN ISO 10218-1

Working range

Axis 1/2/4/5/6:

+360°

Axis 3. £160°

Max. Speed of axis

[3. 5. 10kg] Axis 1/72/3: 150 °/s Axis 4/5/6: 180 °/s

[20kg] Axis 1/2: 110 °/s Axis 3: 150 °/s Axis 4/5/6: 180 °

/s
Max. Speed at Tool 2 2.5 2.5 3.2
End (m/s)
Flange 2DI, 2DO, 24VDC, MODBUS RTU, RS485
Communication
Mounting Any orientation
Operating Temp. 0-40°C
Operating Humidity | 70% RH
Operating Noise =65dB

4.7 Control cabinet

Interface

Power switch

Handle
Vent
Figure 4-16 Cabinet interface
Version V1.0 Copyright @ Estun Codroid 47

https://cn.bing.com/dict/search?q=Repeatability&FORM=BDVSP6&cc=cn

Handle Controlor E—stop

Enable

\\

Figure 4-17 Emergency stop and switch position diagrams and safety 10 interface position

/
1 E—stop Connectors

diagrams

Safety device

1 hand-held enable channel, 1 hand-held E-stop channel

IP classification

IP20

1/0 ports 16DI, 8DO, 4AI/4A0, 7 stop inputs

1/0 power supply 24VDC, 2A

Operating temp. 0~40°C

Operating humidity 10~90%RH, Non-condensing

Noise <65dB

Altitude Below 1000m

Power AC100- 240V, 50/60Hz

Dimensions 380mm x260mm x 200mm

Weight 14kg (Cabinet of 20kg robot) , 11.8kg (Cabinets of 10kg

and below)

4.8 Handle operator

Power Button —p.

Enable Button

Mode Switch

Version V1.0

—

ESTOP

—

Copyright @ Estun Codroid 48

https://cn.bing.com/dict/search?q=Non&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=condensing&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=Operator&FORM=BDVSP6&cc=cn

Figure 4-18 Hand Controller Interface

The hand controller contains four switches or buttons, namely the emergency stop button,
the power on/off button, the enable switch, and the mode switch. Their positions are
shown in Figure 4-18 Hand Controller Interface.

When the robot is off, you can press the power button to turn it on; when it is on, hold
down the power button for a long time to turn it off.

In case of an emergency, press the emergency stop switch on the hand controller. The
robot will be disabled, stop all movements and lock.

When the emergency stop button is pressed, it will be locked. To unlock it, rotate the
button as indicated on it. Only after unlocking can the alarm be cleared through the
control software, and then the enable switch can be turned on to restore from the
emergency state.

The enable switch is a three-position switch. In manual mode: the robot can move only
when the enable switch is in the middle position; when the enable switch is fully released
or fully pressed, a Type 2 stop will be triggered.

warn

1. Do not install an enable switch, which, ifnot avoided,
couldresult in death or serious injuryor damage to the
device.

2. Do not disable the enable switch in any way, which, if
not avoided,could result in death or serious injury or
damage to the device.

3. Do not change or modify the enable switch, which, if
not avoided,could result in death or serious injury or
damage to the device.

4. The enable switch takes effect onlyin manual mode
andcannot trigger any stop function in automatic
mode.

Version V1.0 Copyright @ Estun Codroid 49

Chapter 5 Electrical Hardware and Installation

5.1 End Interface

The base of the robotic arm is equipped with a heavy-duty interface, the end of the
robotic arm is fitted with buttons and indicator lights, and the side of the tool flange is
provided with buttons, a screen and an aviation plug. As shown in Figure 5-1, an
overview of the end interface.

Pilottape — »

M8port flangeButton1~3

Screen flangeButton0

Figure 5-1 Overview of the Terminal Interface

5.1.1 Pro terminal interface

Interface Description

M8 Power supply, input, output and communication 10s

Flange Button User function customization buttons, free drag by default

Flange User function customization buttons to set up functions in the setup

Button1~3 screen

Screen Displays robot status, bus communication, inputs and outputs, RS485
baud rate, user-defined button status, etc.

Indicator light Robot status indicator strip

5.1.2 Meaning of the indicator light strip

Color Information

Blue stays on Initialization in progress

White Turned on but not powered up
Green Manual mode

Yellow flashing Auto-run mode

Red flashing Robot error

5.1.3 M8 Interface

Version V1.0 Copyright @ Estun Codroid 50

The M8 flange interface of the robot is located at the rear side of the end flange. The pin
distribution and definitions are as follows.

pio 1 7 bi

Figure 5-2 Pin Distribution of M8 Interface at the Flange End

Pin No. Name Definition

1 DIO Digital input 0 (flangeDI 0)

2 DI1 Digital input 1 (flangeDI 1)

3 DOO0 Digital output O (flangeDO 0)

4 DO1 Digital output 1 (flangeDO 1)

5 24V + Positive 24V supply to external

6 485- 485 communication - (A) of MODBUS

7 485+ 485 communication + (B) of MODBUS

3 GND Flange internal ground; 24V power supply output
negative terminal

The cable model for the M8 interface is Lumberg KKMV 8-354 or Lutronic FP-222460. It
provides an external 24V power supply with a maximum current of 2A.

The digital output is of PNP type, capable of providing a maximum current of 5mA, and
only offers level signals, which cannot be used to drive devices.

The digital input is configured as PNP type. When a switch is used as the DI input source,
the wiring method is as follows.

24V+

DIl

Figure 5-3 Wiring of PNP Type DI Switch at Flange End

5.2 Screen information

Version V1.0 Copyright @ Estun Codroid 51

Bus State:
Communication \% \ﬂ [A] MODBUS logo Modbus rate
A
T [
baud Rate
_ \ == —
Robot State:
Running B IK{T [B] - | Breathing light
or error info
I [O2/NAS |
\- |0 State
_— | 24V output
24thﬂ Button pressed: 24V output
[active/24V input active
I /O R < < 2~ P ZAVL Th wle P2 AT TGS
33— R SRSEANTF24VERIR 24V
: T J %"—J \— Button released: 24V output
‘Eﬁﬁ‘l ~4 24V§§§)\ inactive/24V input inactive
Buttons: 1 - 4 \ 24V intput
Figure 5-4 Screen Information at the End of the Flange
Info Instruction
Bus state “Offline” (red): indicates that the EtherCAT communication state

machine is in INIT, which usually occurs at startup or when the
communication cable from the controller to the flange is

disconnected somewhere.

“Mailbox” (yellow): indicates that the EtherCAT communication state
machine is in PreOP or BOOT, which occurs when the flange
firmware has been updated or when the PDO has not been
established.

“Live” (green): the EtherCAT communication state machine is in
SafeOP, OP, which means that the communication cable is connected
properly and the communication with the controller is normal.

“Error” (red): indicates that the EtherCAT communication state
machine has unexpectedly switched from OP to INIT, which usually
occurs when the cable is disconnected during communication, when
the controller is suddenly powered down or during a soft reboot.

Robot state

“Normal” (green): the robot has no errors.

“Error” (red): the robot is running with errors.

IO state A high cursor means the corresponding item is active; a low cursor
means the corresponding item is not active.
Version V1.0 Copyright @ Estun Codroid 52

MODBUS rate MODBUS baud rates include 115200, 57600, 28400, 19200, 9600,
4800, 2400, 1200, 600, which can be configured through parameters.

Breathing light or Slow green blinking (2s): communication not fully established (INIT,
error info BOOQT, PreOP)

Green fast blinking (0.5s): real-time communication is connected
(SafeOP, OP)

Red flashing (2s): communication abnormally disconnected OP->INIT

Error message: the robot reports an error and displays an error alarm

5.3 Control cabinet interface

There is only one power button on the front of the control cabinet. Press and hold it for a long
time when the system is off to start the robot system, and press and hold it for a long time
when the system is on to shut down the robot system.

Power Button

Figure 5-5 Power Button of Control Cabinet

Handle LAN

interf CAN/RS485/10
operator |er ace -

Power switch

AC power supply

Reserved

Robot interface

Figure 5-6 Overview of the Control Cabinet Interface

5.3.1 Overview of Electrical Interfaces

Version V1.0 Copyright @ Estun Codroid 53

Interface

Instruction

AC power supply

For connection to AC100-240V 50/60Hz AC mains power
supply

Power switch

Power supply switch

Handle operator

Handle operator

Robot aviation

Used to connect the robot to the control cabinet to provide

connector power and communication to the robot.

LAN For connection to teach pendant, vision, buses and
development debugging

CAN/485/10 CAN/RS485/10

Safety port

Related ports for safety function

Analog/Digital 170

Analog/Digital 1/0

Digital I/0

Digital 1/0

5.3.2 Safety Interface

The safety interface consists of 7 groups of safety dual-channel interfaces. The first to

third groups are protective stop interfaces, and the fourth to seventh groups are

emergency stop interfaces. The internal safety relays of the protective stop interfaces

and the emergency stop interfaces are two independent channels. By default, the

connectors are short-circuited horizontally with yellow short wires at the factory.

Otherwise, the emergency stop state cannot be released.

Figure 5-7-1 Correct Wiring Example for Safety Protective Stop

Version V1.0

Copyright @ Estun Codroid 54

SEEEEEEEEE RN

Figure 5-8 Typical Incorrect Wiring Examples of Safety Protective Stop and Safety
Emergency Stop

5.3.3 General Input and Output Overview

O O H

24Vl Di4 24V (A DIo
24v (Bl DI5 24v|EE[) DN
24v (M DI6 24V (W[D12 o
24v m) o7 24v (mm | Di3 = HrEAER24V Digital internal 24V
24v (B | DI8 24V |l [)] DOO B HsAEeND Digital internal GND
24V | D) DI9 24V |HE [DO1 »
oav mm | o110 24v [mm | o2 B By Digital external 24V
24v (W | 0111 24v |mm | DO3 B gemsmonn Digital external GND
24v B [D2 24v |l | GND = N
24v |HH [D113 1) = HrRRLR Digital output
24v |l [D114 & D greramai Digital input
24v [l [DI15 o) " ,
24v | | bos O = FE BN Eis Positive analog input/output

= 1) A©) D ; o))
24v (Bl) DOs o olem SN/ A (AGND) Negative analog input/output (AGND)
e

|
= 1 p@)
O 0 -

Version V1.0 Copyright @ Estun Codroid 55

Figure 5-9 Functions of Each Terminal of the Input and Output Module

5.3.4 External power connection method for digital input

When entering digital signals, power supply to the port is required. Use an external
power supply and connect the input end with a relay or a PNP-type digital loop. The

wiring method is as follows for reference.

::IO" —/O-J

haa

9]
_J

U

-l 3 =g
= 3 _1 GND

0
y
q_

SRR
i
;5]
z

CTHNNE

g
o
-

X o

Figure 5-10 Example of Wiring for Relay Digital Input

)
=1 !
il
&l
-
| S

M

]
U

o

Figure 5-11 Example of Wiring for PNP-Type Digital Input

5.3.5 Internal power connection method for digital input

When the digital input port is powered, the internal power supply of the base plate can
be used to power the port. The input end can be connected using a relay or a PNP-type
digital loop. The wiring method is as follows:

Version V1.0 Copyright @ Estun Codroid 56

= E : |
i1
;EE
: m
e T=§%5
i]
-Enl ==
-~
- ey
-l
l...- El_
_rfoj

Figure 5-12 Example of Wiring for Relay Digital Input

b
a

ﬂiiiiiiiiiiio
4
ol0OoD OOﬁiiWiio

SELLL
D000hk

b

-

\

Figure 5-13 Typical Wiring Diagram for External Power Supply Provision

External power supply for digital inputs Parameter
External supply voltage Typical 24V
Maximum Output Current Maximum output 5A per group

5.3.6 External power connection method for digital output

The digital output to the device terminal is powered by an external power supply. The
output terminal is connected using a relay or PNP type circuit. The wiring method is as
follows:

Version V1.0 Copyright @ Estun Codroid 57

u 24v
FHEE
o
ing

-..-..................-.......‘..-......-..........‘..........
S R B A S S A E A R A SO

_‘
o]
b

L 18O i [o d 2
E—
' ! FeaEs
- £ I o
i~]
= = = »/J
- NI
Hmol -
- 24y
- - [25
iEmr . mm GHD
;- O O
Sl
e (i [el
il s - +
LR =] [o -
e | J
O - O 1 M1

Figure 5-15 Example of Wiring for Digital Output Using PNP Circuit Type

5.3.7 Internal power connection method for digital output

The digital output to the device terminal is powered by an external power supply. The
output terminal is connected using a relay or PNP type circuit. The wiring method is as

follows:

ceE Tl
—

Version V1.0 Copyright @ Estun Codroid 58

Figure 5-16 Example of Wiring for Digital Output Using Relays

1. e
§ J
i
[T e
— : e
N

Figure 5-17 Example of Wiring for Digital Output Using PNP Circuit Type

digital output

Parameter

Interface type

PNP

Output voltage

Typical 24V; Maximum 30V

Max output current

125mA max. for single group

5.3.8 Simulation input/output interface

The analog input supports both voltage-type and current-type sensors. The input type
of voltage or current needs to be set in the robot settings options; the analog output
only supports current type.

Warn

The analog output port must be connected to a load; otherwise, the robot will
report an error. You can turn off the corresponding analog output port from
the robot's operation interface.

The wiring for vario

Version V1.0

us situations is shown in the following figure:

Copyright @ Estun Codroid 59

_|
O]
mi

TIILLLILLLICI
1 O Nl ;
NMEBIIIIII]
e aEE s
G

VBB, =i -—

Figure 5-18 Correct Wiring Example for Analog Voltage Input

l

o

CNENIRERENEC

£
—
|
1gpo
|UL]_8 - !U' ol "G-—. =t

o]
L

VBE/

o]] (o) R

Figure 5-19 Correct Wiring Example for Analog Current Input Type

Figure 5-20 Correct Wiring Example for Analog Current Output

Analog Inputs Parameter
Resolution 12bit
Measurement range In voltage mode: 0-10V,

In current mode; 4-20mA,;

Version V1.0 Copyright @ Estun Codroid

60

Input Impedance In current mode: 20Q;

Analog Outputs Parameter
Resolution 12bit
Onput Impedance Current mode: 4 - 20mA,;

5.3.9 CAN/485/10 interface

The pin definitions of the interfaces including CAN, 485 and IO on the control cabinet are

as follows:

<
R ¥ oL & O L
& & & & 0@0 & & ¢

Figure 5-21 Definition of CAN/485/10 Interface

Ports Instruction

CAN+ CAN+

CAN- CAN-

485A 485A/485+

485B 485B/485-

ON/OFF External start/stop button
VCC Start-stop signal transmission
COM Start-stop signal receiving

EN Internal start/stop button

Different wiring methods for power supply on and off:

Method (1): Use the power button on the control cabinet and hand controller to turn on

and off the machine.

(Short-circuit the COM and EN interfaces with a jumper wire.)

%
S S, L 2R A R
& & & ¢ 0@0 & & <

Version V1.0 Copyright @ Estun Codroid 61

Figure 5-22 Wiring Diagram for Power Supply Startup Method (1)
Method (2): External power supply start/stop button

Short the COM and EN interfaces with a jumper wire, and connect the ON/OFF and VCC
interfaces to an external self-resetting normally open stop button.

V4

gooocces

Figure 5-23 Wiring Diagram for Power Supply Startup Method @)
Method (3): Self-starting after the control cabinet is powered on

(Short-circuit the VCC and 24VEN interfaces with a jumper wire.)

ﬂ

<
N F K K o
F K F E oé*o & & &

Figure 5-24 Wiring Diagram for Power Supply Startup Method 3

5.3.10 LAN Network Port

o
HMI
Vision
Modbus
Debug
2
Figure 5-25 Network Interface
LAN ports Instruction
HMI Connect to a demonstrator or tablet. Direct connection to internal

router, router connected to keba's ETHO port.

Vision Connecting Visuals. Directly connect to the internal router, which is
connected to the keba's ETHO port.

Modbus Bus connection port. Directly connect to the internal router, which is
connected to the keba's ETHO port.

Version V1.0 Copyright @ Estun Codroid 62

Debug

Debugging, socket port. Direct connection to internal keba controller
ETH1 port.

5.3.11 Communication input

Figure 5-26 AC Input Interface and Switch

The AC input range is: AC100~240 V 50/60 Hz. AC power supply and DC power supply
cannot be connected simultaneously. When in use, a magnetic ring needs to be placed

on the ACIN power cord to eliminate EMC interference.

Version V1.0

Copyright @ Estun Codroid 63

Chapter 6 Maintenance and Warranty

6.1 Notes

Maintenance work can only be carried out by Codroid or authorized system

integrators.

Always perform any visual or workplace inspections for maintenance or repair in

accordance with all safety instructions in this manual.

The change control system and robot joints require recalibration of the robot. The
calibration operation and result judgment method are described in the zero-point
verification manual. Also, the parameter settings need to be checked. If there is a

parameter backup, it can be imported. If not, the parameters need to be reset.

When operating the robot body or control cabinet, the following safety tasks must be

followed:

Remove the main input cable from the back of the control cabinet to ensure that the
system is completely de-energized. Necessary precautions should be taken to
prevent others from re-energizing the system during maintenance. After de-

energizing, re-check the system to ensure it is de-energized.
Please check the grounding connection before restarting the system.

When disassembling the robot body or control cabinet, please comply with the ESD
(Electrostatic Discharge) regulations.

Avoid disassembling the power supply system of the control cabinet. Even after the
control cabinet is turned off, its power supply system can still retain high voltage for

several hours.

Avoid water or dust from entering the robot body or control cabinet.

6.2 Daily inspection items

6.2.1 General cleaning

If dust/dirt/motor oil is observed on the controller or the robotic arm, it can be wiped
clean with a cloth dampened with a cleaning agent. Cleaning agents: water, isopropy!
alcohol, 10% ethanol or 10% naphtha.

In extremely rare cases, a small amount of grease can be seen at the joint. This does not
affect the specified function or service life of the joint.

Do not use compressed air to clean the controller or the mechanical arm; otherwise, the
seals and internal components may be damaged.

Version V1.0 Copyright @ Estun Codroid 64

6.2.2 Control box

Inspection plan

Inspection item Method Monthly Semi- Annual
annual
Emergency stop button for handle Functional test | X
operator
Free Drive Mode Functional test X
Safety inputs and outputs Functional test | X
Teach pendant cables and adapters Visual X
inspection
Terminals on the control box Functional test X
Control cabinet main power and Functional test X
switches

Highlight the safety features of the robot and recommend monthly testing to ensure
proper functioning.

The following tests must be carried out:

6.2.2.1 Test the emergency stop button on the handle operator

Press the emergency stop button.
Observe the robot stop and then turn off the power supply of the joints.

Restart the robot again.

6.2.2.2 Test free drag mode

According to the tool specifications, remove the accessory devices or set the TCP/load.

Hold down the free drag button at the end of the robot to set the robot to free drag

mode.

Move the robot to a position where it is horizontally extended to the edge of its
workspace.

While holding down the free drag button, monitor the robot to maintain its position
without support.

6.2.2.3 Test safe input and output

Check which safety inputs and safety outputs are active and test whether they can be
triggered.

6.2.2.4 Visual inspection

Unplug the power cord from the controller.

Check if the terminals are correctly inserted and if the wires are loose.

Version V1.0 Copyright @ Estun Codroid 65

Check if the network cable inside the controller is loose.

Check if there is any dirt/dust inside the controller. If necessary, clean it with a vacuum
cleaner that prevents static discharge.

6.2.3 Robot

Inspection plan

Inspection item Method Monthly Semi- Annual
annual

Check the joint cover Visual X
inspection

Check cover screws Functional test X

Inspection of flat rings Visual X
inspection

Check robot cables and connections Visual X
inspection

Checking the robotic arm mounting Functional test | X

bolts

Check tool mounting bolts Functional test | X

Check the screws connecting the joints | Functional test X

The purpose of the functional inspection is to ensure that the screws, bolts, tools and
mechanical arms are not loose. The screws/bolts mentioned in the inspection plan
should be checked with a torque wrench.

6.3 System update

This chapter explains how to update the CoDroid robot software. The information in this
manual is accurate at the time of writing. Users will not be notified in advance of
updates for subsequent products.

Before starting the update, please confirm the following update precautions.

Please ensure that the power supply will not be turned off or cut during the update.
Confirm that the correct version of the update compressed file has been obtained.

All the programs of the robot have been backed up.

Before updating, please check the release notes of the version you are updating to. For

detailed information, contact CoDroid technicians.

6.3.1 Update steps

After starting up, enter the robot control platform, go to the project tab, click on the
project management interface, and select the program to be backed up for
downloading to perform the program backup.

Version V1.0 Copyright @ Estun Codroid 66

“ o Manage project

1. Project2025041410392... ((§ [E
2. Project2025040314423... (3§
3. pSocket 0403 K

4. Project2025040310292... (1§

2. Switch the robot to the "power-off" state and press the emergency stop button.

3. Click on the system version number at the lower right corner of the page to enter the
update interface.

DEPLOY SYSTEM
SETTING

Drop fle here or click ta upload

e i i e o 20 G
LOG:
Jopt/kecontrolapplication/application/controlfccontral -

[Info) SUTHEMIES: sudo cp -r fetrl/lib
Jopt/kecontrolapplication/applicationfcantroléccontrol
[Info] #1458 MIBS: sudo cp -r Jetrl/keconfig-cloos
/optykecontrolapplication/application/cantrol && sudo myv

pt/ke application/cantrol/keconfig-cloos
Joptfkecontrolapplication/application/cantrol/canfig
] et o cp -r Jweb Jusr/local/lib/web && sudo mv
st/localylib/web/run
do chmod -R 777 fust/local/lib/web

4. Drag the update file into the file selection box, or click the 'click to upload' button to
select the file you need to update and wait for the upload to complete.

5. Select the appropriate options based on the model requirements.

DEPLOY SYSTEM

SETTING
deployGtion SN
Pleaze zonfirm the deployment. softwareVersion ELli
robotversion shgniasT
i s i e robotDragVersion skt
oldversian 1ax
LOG: contralPeriod 100068
fopt/kecontrolapplication/application/control/ccontrol a B
[Infa) 1738 M54 sudo cp -r setrl/lib
fopt/kecontrolapplication/application/control/ccontrol
[info] H4TH#MIES: sudo cp -r Jetrl/keconfig-cloos nologo
fopt/kecontrolapplication/application/control 88 sudo my
fopt/kecontrolapplication/application/controlfkeconfig-cloos e «

fopt/kecontrolapplication/application/control/config
[infol FFFHEMIES: sudo cp -1 sweb fusr/local/lib/web & sudo mv

fusr/local/lib/web/web fusr/lacal/lib/web/run

udo chmod -R 777 Just/local flib/web 1
[Info] Feak! SESRET =N

Version V1.0 Copyright @ Estun Codroid 67

6. After confirming the update, wait for the robot software to restart automatically. The
update is complete once the restart is finished.

A T4 | 192.168.101.100:8080 A s &G

DEPLOY SYSTEM

Please confirm the

deployment.

zip files with a size less than 20 GB

6.4 Common Mistakes

This section lists some common errors that may occur during the use of the robot. If you
encounter other errors that cannot be resolved, you can download the robot log file in the
log interface and send it to the after-sales personnel for analysis and processing.

6.4.1 Singularity/Inverse solution failure

The working range of a robot is a spherical space with the arm's reach as the radius.
However, there are some special positions and postures that are singular points for the
robot, and these should be avoided during operation.

The following are three typical types of singularities:

A cylindrical area with the base of the robot's pedestal as the bottom surface;

Version V1.0 Copyright @ Estun Codroid 68

When the angle between the robot's upper arm and lower arm approaches 180°,

6.4.2 Trigger collision detection

The torque sensors in the robot joints will detect the force exerted on the robot in real
time. When the force exceeds the expected value, a collision detection will be triggered. At
this point, it is necessary to confirm whether the robot's movement trajectory is correct

Version V1.0 Copyright @ Estun Codroid 69

and whether there is anything obstructing the robot's movement.

If the robot's motion trajectory is correct but the collision detection is still triggered, it is
necessary to check whether the tool is set correctly, whether the load is set correctly, and
whether the pipeline of the end tool is normal, etc.

6.4.3 Location/Speed Exceedance

When the robot exceeds the position or speed limit during operation, check whether the
program is correctly written. If it is correct, you can modify the corresponding parameter
limit in the safety settings of the settings.

If a position limit error occurs and the robot remains in an over-limit state even after the
error is cleared, and it still alarms upon re-powering, the rescue mode can be enabled to
adjust the robot to an appropriate posture.

6.4.4 Joint tracking error is too large

When excessive joint tracking errors occur during the robot's movement, it is necessary to
check whether the movement speed and acceleration are reasonable, and whether the
robot's load is correct and within the robot's load capacity.

6.4.5 Alarm cleared

Error code Info

Joint velocity command jumped or
local acceleration too large

0x10100515

Confirm

When an alarm pop-up window appears, you can directly activate the rescue mode or
click "OK" and then manually reset it to enter the rescue mode. The steps to clear the
alarm in the rescue mode are as follows:

a) click O click m to clear the error report;

b) Click

, to turn on the rescue mode;

) Power On

c) Tap & to power up the robot. 4;

d) Inrescue mode, rotate the overrun joints to the correct position by tapping the

Version V1.0 Copyright @ Estun Codroid 70

joints;

2 to shut down the robot. 6;

e o)

f) Tap & 1 to exit rescue mode;

g) Repeat step 3 to power up the robot.

6.5 Fault code description

Currently, there are a total of 6 information levels for the robot. The fourth digit of the
error code indicates the error level.

No. Error & Level

0 System occupancy
1 System prompt
2 Alert

3 General Error

4 Critical error

5 Fatal error

When general errors or more serious issues occur, the robot will power off and stop
operating.

When a warning-level error occurs, the robot will slow down and stop.

If multiple errors occur at the same time, the one with the highest severity level will
be executed.

There will only be one error code for the same type of error, but the content of the
error will be specifically displayed on the demonstrator

For specific error codes and details, please refer to the appendix.

6.6 Disclaimer

Estun Codroid is committed to creating a harmonious future where humans and
machines coexist. While continuously enhancing the reliability and performance of our
products, we reserve the right to upgrade them without prior notice. Estun Codroid
strives to ensure the accuracy and reliability of the information in this manual, but

assumes no responsibility for any errors or omissions.
The following situations resulting in malfunctions are not covered by this warranty:

Installation, wiring, and connection to other control devices were not carried out in
accordance with the requirements of the user manual;

Use beyond the specifications or standards indicated in the user manual;
Product damage caused by improper transportation or use;
Damage caused by accidents or collisions;

Natural disasters such as fire, earthquake, tsunami, lightning strike, strong wind and

Version V1.0 Copyright @ Estun Codroid 71

https://cn.bing.com/dict/search?q=system&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=prompt&FORM=BDVSP6&cc=cn

flood,;
Modifications to system software or internal data;

Use of this product in radioactive equipment, biological testing equipment or for
hazardous purposes;

The production date or the start date of the warranty cannot be identified.

Faults not caused by Nanjing Estun Codroid Co., Ltd. other than the above situations.

6.7 Abandoned robots

Abandoned robots must comply with national and local laws and relevant regulations.

Version V1.0 Copyright @ Estun Codroid 72

Chapter 7 Overview of the Teaching Pendant

Interface

7.1 Login interface

The default startup account is admin, the password is 123456, and the mode is custom.

If the IP address of the connected controller has been modified, you can click the red

button to set the required IP address and port and save it.

Clicking the "Clear Cache" button can clear the browser cache. It is recommended to

clear the cache when switching the connected robot.

7.2 Home page

Version V1.0

Username

admin

LOGIN

A Enter Account Login Or Contact Adm

[3y Online Settings

Link Setting

ROBOT WS ws:/192.168.101.100:9000

More Server

Figure 7-1 Login Interface

SETTING RECORD

X W L QN
J8poiNTs | ATTR o0 x 30 Simudation

Apos cpos ((DAPOS) | DCPOS

Figure 7-2 Main Interface

Copyright @ Estun Codroid

MANAGE

BY CODROID Vi1

73

After successfully logging in, you will be redirected to the main interface, which displays
the contents of “Project” tab by default and is divided into 4 operable areas:

7.2.1 Switch tab area

SETTING RECORD MANAGE [2 admin . =)

It includes four buttons: "Engineering”, "Settings”, "Logs", and "Management”, which
respectively switch to four different display interfaces.

7.2.2 Account Settings Button

0]
i)

The button displays the currently logged-in account. Clicking it leads to a "Re-login”
option that redirects to the password interface.

7.2.3 Error message and real-time log window button

Pop up the error message and real-time log window.

Error code Info

Joint velocity command jumped or

0x10100515 :
local acceleration too large

Version V1.0 Copyright @ Estun Codroid 74

Error code

Info

[Robot] Joint3 desired velocity jump: -4.530000 --
> -4.633000 (rad/s).

Figure 7-3 Error Messages and Real-time Logs

When the robot reports an error, an error message is displayed here, containing the time
of the error, the error code, and a description of the error message. After confirming that
the robot's fault status is clear, you can press the “Reset” button to clear the error
message, and the robot can be powered up again after the error status is cleared.

7.2.4 Full-screen display button

Used to switch between full-screen and non-full-screen mode of the web page (full-
screen display is recommended).

7.3 Project Tab

In the Project tab, the main areas include the menu area, graphic programming area,
pose list, variable list, parameter area, 3D display area, 10 area, project management area,
and speed multiplier adjustment area.

Version V1.0 Copyright @ Estun Codroid 75

SETTING RECORD MANAGE

RUEEFITH S REBHAE

(5] project20250414111245. © O X JpoiNTs | ATTR Hej 30 Simulation

#pos cros

—> Mol Pt

b Mov P2

=
@

%

z

£

'

d

g

= Foliow coord

B
&

Figure 7-4 Layout of the Project Interface

7.3.1 Quick operation area

Fos,
= _ _
===F |nsert instructions above;

[E=="1
e

&l |nsert instructions below;

e . . _
(===l |nsert instructions internally;

Move the command up one level;

Move the command down one level;

Zoom in on the program tree area;

Reduce the program tree area;

E Paste command;
j Copy the selected command;

Cut the selected command;

.
m Delete the selected command;

@ Annotate the selected command;

H Linear movement to the point

Version V1.0 Copyright @ Estun Codroid

<Be]0int movement to the point

Update Points;

Project Settings

Undo the current operation

N7 RCRD

Redo the current operation

I

0gogq

Open the batch management operation; after opening it, you can manage the project,
program tree and point list in batch. You can select a command individually or select all
or reverse selection, and then you can do copy, paste, delete and other operations on

it; Open the Variable Management screen;

& Track record

7.3.2 Graphics Programming Area

() Project20250414111245... &2 main1 ~

=

SetDO SetAD WaitDI WaitDI84 WaitAl GetDI842
21 1

GetDO84 SetDOB842 GetDO GetDI GetAO GetAl
Position 21 1

Version V1.0 Copyright @ Estun Codroid 77

The graphic programming area can be divided into four parts, namely: the title area, the
instruction classification area for programming, the instruction area for programming,
and the program tree area.

7.3.2.1 Title Area

There are three buttons in the title area, namely:

Project property editing and task management:

| ProjectDemo

List

Serial Name

Number

1

Full screen / Restore window, Close window
Name the current project.
Switch between multiple programs / (a single) program

Program management in multiple programs (subroutine naming, adding new
subroutines, deleting subroutines), with a maximum support of 30 multiple
programs in one project.

Full Screen/Restore Window: Full screen/restore the “Graphics Programming Area”
display.

Close the Graphics Programming Area window.

8 @ ® OO

After closing the “Graphic Programming Area”, you can click on the “Visual Programming”
button A to restore the display.

7.3.2.2 Multitasking

The robot supports multi-tasking programs. Different types of tasks can be added by

Version V1.0 Copyright @ Estun Codroid 78

=
clicking on the button, namely subtasks, interrupt tasks, programs with motion
instructions and programs without motion instructions. Selecting a task or program
switches the currently programmed program tree.

Interrupt tasks, programs containing motion instructions, and programs without motion
instructions. Selecting a certain task or program can switch the current programming
program tree.

~+ Sub + Macro 4 Subroutine

~ Subthread

A project only contains one main task, but can include multiple sub-tasks and
multiple interrupt tasks. When the project runs, it starts from the main task.

Sub tasks must be initiated and run within the main task through the RUN command
and do not run automatically. Sub-tasks are not allowed to contain motion
instructions. The main task can stop sub-tasks through the KILL command (sub-
tasks are allowed to RUN and KILL other sub-tasks), but the main task cannot be
KILLED.

Macro tasks must be bound in the main task through interrupt-related instructions.
When the interrupt condition is triggered, the main task enters a suspended state
and then switches to the execution of the bound interrupt task. After the interrupt
task finishes running, the main task resumes operation.

The macro task cannot contain motion instructions and cannot run other tasks.
Before the interrupt task exits, the robot must be moved to the position where the
interrupt was triggered. Otherwise, after the interrupt task exits, the main task will
remain paused. It is necessary to manually move the robot to the position where the
interrupt was triggered and then click to resume operation.

When multiple macro conditions are triggered simultaneously, the macro task that
was bound first will be executed. After its completion, the triggering conditions will
be re-evaluated. This logic will be repeated (i.e., only one interrupt task can run at a
time and will not be interrupted by other interrupt tasks).

A task cannot be run simultaneously by multiple other tasks.

Programs can only be called by tasks through the Call instruction. Programs are
distinguished based on whether they contain motion instructions.

Both the main task and interrupt tasks can call all programs.
Sub tasks can only call programs that do not contain motion instructions.

A program can be called by multiple tasks simultaneously.

7.3.2.3 Programming instructions

Version V1.0 Copyright @ Estun Codroid 79

MovL MovC MovCircle MovJRel MovLRel

MovlSear AddDo Movlraj
Wait ch

Programming instructions refer to graphical programming instructions. After selecting a
category, click on the required graphical programming instruction to add it to the
program tree on the right, or you can directly drag the instruction to the program tree
on the right.

7.3.2.4 Program Tree

—> MovL P2

. GoTo Label @

In the program tree, you can add, delete, comment, copy, and sort program nodes, and

you can also edit the parameters of the added program nodes.

Add instructions
‘ [Label start
3 MovL P1

> MovL P2

‘ GoTo |Label®

SetTool

After selecting a category, click on the desired graphical programming instruction to
add it to the program tree on the right. You can also directly drag and drop the
instruction into the program tree on the right. Depending on the way the instruction is

Version V1.0 Copyright @ Estun Codroid 80

inserted in the quick operation area, it can be added above, below, or as a sub-level of
the currently selected instruction in the program tree.

Delete/Comment Instruction

f‘rc-p-_-l_' tDema

Double-click the program node to be deleted, or select the parameter list, the

P —
corresponding node edit window, and click the Delete button.

Click the program node that needs to be commented, the corresponding node editing

L g

button, the commented instruction will be

window pops up, click the Comment
kept in the program but the instruction will not be executed at runtime.

Copy instruction

Click the program node to be copied, the corresponding node editing window will pop

up, click the Copy button. The new node will be automatically pasted in the next

Version V1.0 Copyright @ Estun Codroid 81

line of the copied one.

Sorting instructions

V

C’i—- Mov) P1

—b Movl

> Movl P2

Select and drag the program node whose sequence needs to be changed and place it

at the desired position. Depending on where it is released, instructions can be added
above, below, or at a sub-level of a certain instruction.

Editing instructions

Label start

—> MovL P1

CPOS

L

@ SetTool Copy Comments Delete

Target Location : P

APOS CPOS
Speed : | vioo
Acceleration 2 ‘ ACC100

Transition Type : ‘ FINE

Attr Settings

Double-click the instruction that needs to be edited or select the instruction and then
click the parameter list to edit the detailed parameters of the instruction.

Pose List Area

Folding instructions

Version V1.0 Copyright @ Estun Codroid 82

:

C{w Mov) P1

—> MovL P2

Some commands can be collapsed; clicking on the g in front of a command collapses

the command's secondary, and vice versa expands it.

Instruction Notes

Notes can be added to commands, and the notes will be displayed on the right side of

the commands.

7.3.3 Pose Zone

Add a new pose
% POSE Parameters

APOS

In the pose tag button, you can double-click to add a new pose. Selecting different
pose types will add the selected pose. There are four types of poses:

+ CPOS: Cartesian position

+ APOS: axis position (Joint position)

Version V1.0 Copyright @ Estun Codroid 83

- DCPOS: delta cartesian position (increment of the Cartesian pose);
* DAPQOS: delta axis position (Increment of joint position);

When CPOS and APQOS are added, they represent the Cartesian pose and joint position
of the current robot respectively. When DCPOS and DAPOS are added, all their values
are 0.

For detailed information on various points, please refer to the Variables section.

Edit pose

Updates Copy Delete

| -180.9582116749238
| 391.9047771604961

350.299508823477

. 176.57062312768758 ¢

| 7-559105296199172

Click to open the pose editor window. In this window, you can operate on the points.
Move in a straight line to the point.
The joint moves to the point.
Update
Copy
Delete
Edit the name of the location.
Edit the position values of CPOS, APOS, DCPOS, and DAPQOS.
POSCFG configuration
Move to pose

In non-automatic mode, the "Move to" function has two buttons:

P

-

o Move to the current position in the MovL mode.

Version V1.0 Copyright @ Estun Codroid 84

Move to the current position in the Mov] mode.
Updated pose

Update the current Cartesian position/joint position to the selected point position via the
button.

Copy pose

By copying the selected points with the button and pasting them afterwards, the
point name will be the serial number of the last added point plus 1.

Delete pose

.
Delete the selected points with the m button.

Edit pose name
Rename the point by using the "Name" text box.
Edit pose values

The text boxes under CPOS, APOS, DCPQOS, and DAPQOS can be edited. Entering a value
will change the value or increment of the selected point's Cartesian pose/joint position.

POSCG configuration

At the same Cartesian space position, a robot can have multiple combinations of joint
positions (corresponding to the multiple solutions of the robot's inverse kinematics). This
attribute is used to define the morphological configuration data corresponding to the
spatial target point.

When mode = -1, it indicates that the current configuration is to be maintained. The
kinematics of the general six-joint robot has eight sets of solutions. The mode values are
defined as 0 to 7, with the meanings as shown in the following table:

Mode | piggnchuf R F—8h4 000 % R(flagl) Axis3(flag3) Axis5(flag5)
0: R 1 R (63 + 90 — arctan(5/L3)) “9_]
bl
R+ Ly *cos(8y +83) + Ly »sinfy + S » sin(8, + 6y) | 0 [0:180] &
: [0.180]
1:(-180,0)
1:(-180.0)
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 |
+ 1 0 0

LA

1

[1 1 0

7.3.4 Parameter Area

Version V1.0 Copyright @ Estun Codroid 85

Project20250414108826... &2 main1 ~ §0b] X POINTS (= ATTR

Target Location : | P1

Speed
@ SetTool remark

Acceleration

Transition Type :

Attr Settings

Desc

View, edit, and delete the details of the selected program tree instructions. The
parameters of each instruction are slightly different. For specific details, please refer to
Chapter 10.

7.3.5 3D Simulation

Display real-time robot simulation animations as well as the Cartesian coordinate
system pose and joint positions.

Power Off o

Manual Switch to Current Tool:
Mode automatic mode
Tool0

Current Payload:

Payload0

x -180.971 mn¥
y- 377.341 mm
i 534.753 mm
a(rx): 176.575 deg
b(ry): 7.558deg
c(rz): 8.880 deg
mode: 0

Axis1: 85.508 deg
Axis2: -12.798 deg
Axis3: 81.534deg
Axis4: -26.373 deg
Axis5: 83.458 deg
Axise: -13.891 deg

TCP erollow coord

Version V1.0 Copyright @ Estun Codroid 86

on or off power.

Rescue mode, in which the joints can be jogged without motion range
restrictions (enter this mode when the robot is in the "power-off state").

"Teach mode", after enabling it, power on the robot to move the joints in point mode.

] Rescue Mode, to tap the joints without range of motion
restrictions (enter Rescue Mode when the robot is “powered down”, turn it on, and then
power up the robot to tap the joints);

Current Coordinate:

(Coordinate0 \))))
i # Current coordinate system. Switch the "user coordinate system"

variable currently in use;

Current Tool:
ToolD

Current tool. Switch the "Default Tool" variable in the Settings tab -

w
Q
<2
3]

Current Payload:

Payload0
Current load, switch the "Default Load" variable in the Settings tab -

Manual Switch to
Mode automatic mode

o
0
ﬁ 2'
)

Manual/Auto mode switching;

Simulation/live mode switching, switching between “simulation mode” and “live

mode” of the robot in the power-down state, in the simulation mode, the live robot will
not move;

Drag Sensitivity, which adjusts drag teach sensitivity and whether or not attitude

lock is turned on;

e

Toolbox with tools for switching viewpoints, clearing motion trajectories, zero
calibration, return to zero position, return to packed position, and more;

8

LECENED Stop simulation rendering and stop rendering the 3D simulation model,
which saves the oscillator hardware resources.

SO

e PRl Switch viewpoints to quickly switch between the viewpoints of the 3D
simulation;

)
@18y Clear Trajectory Line, clears the trajectory line of the end TCP in the 3D

simulation space;
SRSl To return to the zero position, click and then long press the lower right button

Version V1.0 Copyright @ Estun Codroid 87

back to the robot home point position;

©)

To return to the safe point position, click and then long press the bottom
right button to return to the robot's safe point position stance. This point position can be
set in Setup Heavy Safety;

)
The robot returns to the vertical attitude position;

To return to the packing position, click and long press the lower right

button to return to the robot's crating stance;

Target position display, whether or not to display the robot's target position for
the next command in automatic mode;

TCP
Tap mode switching, switching between “joint jogging

(articulation)’/“end jogging (Cartesian motion)”, and different speeds can be adjusted by
the speed multiplier.

Follow tool

The End Tap coordinate system allows you to choose to
move the robot along the current coordinate system or the tool coordinate system.

7.3.6 Register

RobotBase

Address Type Name Permis... Monitoring

0x0000 Uint8 majorVersion = o ‘.Eﬁl

0x0001 Uint8 minorVersion
0x0002 Uint8 reserved
0x0003 Uint8 reserved
0x0004 Uint16 milliSeconds
0x0005 Uint8 seconds
0x0006 Uint8 minutes
0x0007 Uint8 hours
0x0008 Uint8 moveRate
0x0009 Uint16 days
0x000A Ulnt8 reserved
0x000B Uint8 reserved

0x000C Uint8 reserved

The register interface displays the status of all registers. There are communication

registers inside the robot. For the addresses and meanings of these registers, please
refer to the register table.

Version V1.0 Copyright @ Estun Codroid 88

In the permissions, "ro" stands for read-only access to the outside, and "rw" stands for
read and write access to the outside.

When monitoring is turned on , the pendant refreshes the register values in real
time. When debugging, you can communicate with the external device debugging by

modifying and issuing the value.

7.3.71/0

Digital Input

Digital Output
Port

16

17

18

19

20

21

The I/O interface shows the status of all digital IOs and analog |Os, and you can

manually operate the 10s in this interface in the “unlocked” state & , while the 10s

in the “locked” state cannot be manually operated.

After unlocking, you can rename the 10s to make them easier to program.

The mandatory option m forces the corresponding input to be changed to a
manually selected state.

7.3.8 Variable Management

Version V1.0 Copyright @ Estun Codroid 89

Project Vars

system global project POINT

Name Operation

~ [ibianlaing @ ﬁ-

—|— Add variable ‘ I E] Save ‘

Under the variable label, defined variables can be stored. For specific details of each
type of variable, please refer to Chapter 8.

Classification of variables

System: Stores DI/DO, Al/AO and other variables. Users are not allowed to create, edit
or delete variables.

Global: Variables with a scope of "global”, allowing users to create, edit or delete
variables.

Project: Variables with a scope of "project”, allowing users to create, edit or delete
variables.

POINT variable

During the program's operation, by selecting the corresponding pose, the interface will
refresh in real time to display the current point position variables.

Project Vars

system global project = POINT

Select Watch Points

Oer2 [Oe1

Variable search

- Enter the variable name in the search box to search for the corresponding

variable.

Create a new variable

Version V1.0 Copyright @ Estun Codroid 90

Add variable

Variable Class: Project

Type

Name

Variable Value

INT

value(int)

In the Variable tab, you can click “Add variable” button to add a new variable, select a
different variable classification, type then add the selected variable classification, type,
specific definitions refer to the introduction of variables.

The type should add the selected variable classification and type. For specific definitions,
please refer to the variable introduction.

Variable monitoring

@ Select the variable you want to monitor and expand it to view the running value.
Currently, up to 10 variables can be viewed at the same time.

Edit variable

Click button to edit the variable name, hold line variable and value for the current
variable. The variable category and variable type cannot be changed.

Delete the variable

[
Click button m to delete the variable.

Save variables

Save
Click button - (save variable) to save the variable to the controller.

7.3.9 Project Management Area

In the Project Management menu, you can manage the projects.

33 1(e () (e 31O

Version V1.0 Copyright @ Estun Codroid 91

DI_‘

Project settings, switching language, switching layout, switching theme, refreshing
page, locking window, variable management, and setting online options; you can also
set whether the program tree can be dragged and dropped for commands, and
whether double-click is enabled in the tutorial interface.

Bg Setting

Language Setting
ez English
Switch Format
Default Programme
Theme Setting
Dark
Quick Work

% Reload

(2] Project Vars

Other Settings

Close Drag Close Dbclick /
e

New Project, create a new robot project;

= &

Save project, when the button of save project is “red”, the changes of the current
project have not been saved, when the button of save project is “blue”, the changes of
the current project have been saved,;

Project management, you can download, copy and delete the saved project;

Import project, import the project saved locally;

ON-Bo)

Run, run the current project (single-step execution, automatic execution), running
the project must be in “automatic mode”.

Version V1.0 Copyright @ Estun Codroid 92

i o Manage project

1. Project20250414103926
2. Project20250403144239
3. pSocket 0403

4. Project20250403102925

5. Project20250401164708

In the Project Management dialog box, is to download the project, is to copy

W
the project, m is to delete the project.

7.3.10 Speed ratio adjustment area

Manual Mode Speed Multiplier ¢ ¢

72%

The speed rate bar for movement can adjust the speed rate. The values for manual jog
mode and automatic operation mode are independent. The value range is 1% to 100%.

The actual running speed of the robot in automatic mode = the speed of motion
instructions x speed ratio.

In manual mode, the joint jogging speed is 100% of the maximum joint jogging speed,
the Cartesian jogging linear speed is 100% of the maximum Cartesian jogging linear
speed, and the Cartesian jogging rotational speed is 100% of the maximum Cartesian
jogging rotational speed. These values can be modified in the relevant options of the
settings tab.

7.4 Settings tab

7.4.1 Basic

When saving parameters, the robot will automatically power off. When powered on
again, the new parameters will be applied.

7.4.1.1 IP address

Double-click the IP address to change the robot's IP address. The change will take effect
after the control cabinet is powered off and restarted.

Version V1.0 Copyright @ Estun Codroid 93

7.4.1.2 Serial number

The serial numbers of the entire machine, control cabinet, robotic arm, and each joint
are the unique identifiers for each component of the robot. The serial number of the

entire machine will also be marked on the labels of the robotic arm and control cabinet.

7.4.1.3 Default tools

By creating a variable of type TOOL in the variable, you can select the created tool in
the drop-down list of the default tool.

The TOOL variable contains the position and rotation of TCP relative to the robot's end
flange, the mass of the tool, the center of mass of the tool (relative to the TCP
coordinate system), and the inertia tensor of the tool.

The default tool is the tool parameter loaded at startup. Incorrect selection of the
default tool may cause the robot to shut down, and in severe cases, it may damage the
robot's joints.

7.4.1.4 Default load

By creating a variable of the PAYLOAD type in the variable, you can select the created
payload in the default payload drop-down box.

The PAYLOAD variable contains the mass, center of mass, and inertia tensor of the
payload.

The default load is the load parameter that is loaded when the machine starts up.
Selecting an incorrect default load may cause the robot to shut down, and in severe
cases, it may damage the robot's joints.

7.4.1.5 DH Parameters

Users can view the DH parameters of this robot here.

7.4.1.6 Installation

You can choose a preset installation method or customize the installation offset and
rotation relative to the world coordinate system. Once the robot is installed and fixed,

the installation rotation and offset will not change.

7.4.1.7 xyz offset

The installation-offset parameter represents the offset of the robot base relative to the
world coordinate system. This parameter has no practical significance in a single-robot
system. In a multi-robot system, it can indicate the relative position relationship

between robots.

Version V1.0 Copyright @ Estun Codroid 94

7.4.1.8 abc rotation

The parameters for installation-rotation are related to the installation posture of the

robot. When installing at other angles, parameter settings need to be made in the

installation-rotation. After setting the parameters, the robot model on the right will

rotate in real time according to the input parameters. When the simulated robot posture

is consistent with the actual one, click the save button. After re-powering on, the

parameters will take effect.

7.4.2 Tools, load, coordinate system

7.4.2.1 Tools

The robot can store up to 16 tool parameters, among which parameter No. O cannot be

modified. Tool parameters can be generated through user calibration or freely inputted

with numerical values. The meanings of the tool parameters are as follows:

Parameter Parameter Data type Parameter Meaning

TOOL X real The displacement offset of the TCP in the x-

Used to direction with respect to the flange coordinate

record tool system in mm.

parameters y real The displacement offset of the TCP in the y-

that define direction with respect to the flange coordinate

tool end system in mm.

displacement | z real The displacement offset of the TCP in the z-

and rotation direction with respect to the flange coordinate

relative to the system in mm.

robot flange. | a real The Euler angle of rotation of the TCP with
respect to the z-axis of the flange coordinate
system, in deg.

b real The Euler angle of rotation of the TCP with
respect to the y' axis of the flange coordinate
system, in deg.

c real The Euler angle of rotation of the TCP with
respect to the x"" axis of the flange coordinate
system, in deg.

dyn(LoadDyn) | M real The wight of the tool in kg.
is used to
store the
robot end
tool and load
quality
information
parameters.
Pos Mx real The offset of the center of gravity C of the
The position mounted tool or clamped load in the X
of the direction of the coordinate system OTool-XYZ
installed tool in mm.
or load on My real The offset of the center of gravity C of the
the mounted tool or clamped load in the Y
coordinate direction of the coordinate system OTool-XYZ
system in mm.
Version V1.0 Copyright @ Estun Codroid

95

OTool-XYZ. Mz real The offset in mm of the center of gravity C of
the mounted tool or clamped load in the Z
direction of the coordinate system OTool-XYZ.

7.4.2.2 Load

The robot can store up to 16 load parameters, among which parameter No. O cannot be
modified. The load parameters can be generated by user calibration.

Or enter values freely. The meanings of the load parameters are as follows:

Parameter Parameter Data type Parameter Meaning

dyn(LoadDy | M real The weight of payload

n)

Used to

store robot

end tool and

load quality

information

parameters.

CenterPos Mx real The offset of the center of gravity C of the
The position clamped load in the X direction of the

of the coordinate system OTool-XYZ in mm.
installed tool | My real The offset of the center of gravity C of the
or load on clamped load in the Y direction of the

the coordinate system OTool-XYZ in mm.
coordinate Mz real The offset of the center of gravity C of the
system clamped load in the Z direction of the
OTool-XYZ. coordinate system OTool-XYZ in mm.

7.4.2.3 Coordinate system

The robot can store up to 16 coordinate system parameters, among which parameter 0
cannot be modified. The coordinate system parameters can be generated through user
calibration or freely inputted with numerical values. The meanings of the coordinate

system parameters are as follows:

Parameter Data type Parameter Meaning

X real The displacement offset of the user coordinate system origin
relative to the world coordinate system in the x-direction in
mm.

y real The displacement offset of the user coordinate system origin
relative to the world coordinate system in the x-direction in
mm.

z real The displacement offset of the user coordinate system origin
relative to the world coordinate system in the x-direction in
mm.

a real The Euler angle of rotation of the user coordinate system
relative to the z-axis of the world coordinate system, in deg.

b real Euler angle of rotation of the user coordinate system relative
to the y' axis of the world coordinate system, in deg.

c real Euler angle of rotation of the user coordinate system with
respect to the x" axis of the world coordinate system, in deg.

7.4.3 Others

The master switch can be used to determine whether to enable the security rules. When

Version V1.0 Copyright @ Estun Codroid 96

the master switch is turned off, no rule will take effect.

7.4.3.1 Joint overspeed protection

Whether to enable the safety overspeed protection. After disabling it, the system will not
detect whether the joint speed exceeds the joint overspeed threshold.

7.4.3.2 Joint hypermobility threshold

The overspeed threshold for each joint.

7.4.3.3 End-of-travel overspeed protection

Whether to enable the safety overspeed protection. If it is turned off, the system will not
detect whether the terminal speed exceeds the threshold.

7.4.3.4 Joint collision detection sensitivity

Users do not need to be concerned about the specific threshold parameters for each axis.
The threshold is dynamically changing. 100% represents the highest sensitivity, and 0%
means it is off. The more accurate the load configuration is, the higher this setting can be.

7.4.3.5 Joint collision detection threshold

Each joint of the Codroid S series robot is equipped with a torque sensor to detect the
torque applied to the joint. When the robot is powered on and the detected torque value
exceeds the output torque limit threshold of the joint, the robot will report an error and
power off. At this point, it is necessary to check the cause of the situation. After resolving

the issue, power on the robot again.
The possible reasons for the robot exceeding the torque limit are:
a) The actual load at the end does not match the setting.
b) 2. The robot collided.
c) 3. The settings for speed and acceleration are unreasonable.
d) 4. Other circumstances.
Users can adjust the threshold as needed for their specific applications, but it is not

recommended to disable the protection, as this may lead to potential security risks.

7.4.3.6 Joint Limiting

Joint limit is used to restrict the movement of each robot joint in the joint space, defining
the position range of each joint. Customers can modify the threshold according to the
actual application. If the threshold is set too small, it will affect the movement range of
the robot.

Version V1.0 Copyright @ Estun Codroid 97

7.4.3.7 End stop limit

The end limit is used to restrict the movement position of the robot's TCP, defining the
position range in the x, y, and z axes directions and rotation. Customers can modify the
threshold according to the actual application. If the threshold is set too small, it will affect

the robot's movement range.

7.4.3.8 Safe positions

The robot's posture at the set safety position can be configured to output a signal in the
set IO when the robot is at that position.

7.4.3.9 Manual mode terminal speed limit

In manual mode, the maximum Cartesian speed of the robot can be jogged. Under any
circumstances in manual mode, the speed will not exceed this value.

7.4.3.10 Load verification sensitivity

When the drag robot function is enabled, the robot will verify whether the current load is
correct before the function is turned on. If the actual load deviates too much from the
theoretical load, the robot will not start dragging to protect itself and the operator.
Adjusting the sensitivity level can limit the deviation threshold.

7.4.3.11 Drag enable sensitivity check

At the moment the drag button is pressed, the robot will recheck whether the load
configuration is correct to prevent sudden movement of the robot caused by the user

disabling collision detection while the load configuration is incorrect.

7.4.4 Sports

Motion parameters define the maximum values of the robot's speed, acceleration and

jerk in both automatic and manual modes.
Optimization of sports performance

When enabled, it will optimize the jittering situation during low-speed movement.
7.4.4.1 Point movement
Joint speed

In manual mode, the maximum speed of joint jogging is 30°/s. You can limit the

maximum speed of joint jogging here.

Version V1.0 Copyright @ Estun Codroid 98

End linear velocity

In manual mode, the maximum linear speed of Cartesian point movement is 250 mm/s.
You can limit the maximum linear speed of Cartesian manual point movement here.

Angular velocity at the end

In manual mode, the maximum angular velocity of the end rotation for Cartesian point
movement is 30°/s. You can set the maximum angular velocity of the end rotation for
Cartesian manual point movement here.

7.4.4.2 It's time for exercise.

Joint speed

In manual mode, the default joint angular velocity for moving to a point in joint mode is
30°/s, with a maximum of 90°/s.

End linear velocity

In manual mode, the Cartesian linear velocity for moving to a point in Cartesian mode is
250 mm/s by default, with a maximum of 1000 mm/s.

Angular velocity at the end

In manual mode, the default Cartesian angular velocity for moving to a point in Cartesian
mode is 30°/s, with a maximum of 90°/s.

7.4.4.3 Automatic

Maximum joint speed

The upper limit of the speed that the robot can reach when moving in automatic mode.
After setting the maximum speed, when creating a new variable of the SPEED type, the
speed setting of the TCP will be restricted to be less than this maximum value.

Maximum joint acceleration

In automatic mode, the joint acceleration limits the maximum value of acceleration. Users
can adjust the maximum acceleration value appropriately according to the application,
which can increase the movement tempo. However, if the acceleration is set too high, it
may cause the robot to shake when starting and stopping. Long-term use of

unreasonable acceleration may cause damage to the joint reducer.
Joint acceleration increment

The upper limit of the jerk that the robot can achieve during movement in automatic
mode. The smaller the value, the smoother the movement process, but the longer the
time consumed.

Maximum terminal velocity

The maximum linear speed of the robot end effector in automatic mode. After setting the
maximum speed, when creating a new variable of the SPEED type, the speed setting of
the TCP will be restricted to be less than this maximum value.

Version V1.0 Copyright @ Estun Codroid 99

Maximum acceleration at the end

In automatic mode, the maximum value of the linear acceleration at the robot's end is
limited. Users can adjust the maximum acceleration value appropriately according to the
application, which can increase the motion cycle. However, if the acceleration is set too
high, it may cause the robot to shake when starting or stopping. Long-term use of an

unreasonable acceleration setting may cause damage to the joint reducer.
Add acceleration at the end.

The upper limit of the linear acceleration that the robot can achieve when moving in
automatic mode. The smaller the value, the smoother the movement process, but the

longer the time consumed.
Pause time

The deceleration time when the robot program is paused in automatic mode.

7.4.5 Register communication

Since ModbusTCP, ProfiNet, and EtherNet/IP all operate on the same register address,
only one communication protocol can be selected for use. If none of the
communication protocols are to be used, the enable function should be turned off. To
use ProfiNet or EtherNet/IP, a communication module for the entity must be added.
After modifying the settings, the changes will take effect only after saving and restarting
the robot.

7.4.5.1 ModbusTCP

Protocol Version

The current software version of ModbusTCP used by the robot.
Port

The port used by the ModbusTCP protocol when the robot is in the standby state.
Slaves address

The address where the robot stands when it is in the ready position.

7.4.5.2 ProfiNet

Protocol Version
The current ProfiNet software version used by the robot.
Slaves name

The name of the robot ProfiNet slave station can be modified by double-clicking. The
modification will take effect after the robot is restarted.

IP

Version V1.0 Copyright @ Estun Codroid 100

The IP address of the robot ProfiNet module can be modified by double-clicking to
change the name. The changes will take effect after the robot is restarted.

Data mode
The ProfiNet protocol data mode supported by different brand devices varies slightly.

You can choose either big-endian mode or little-endian mode.

7.4.5.3 EtherNetIP

Protocol Version
The current software version of EtherNet/IP used by the robot.
IP

The IP address of the robot's EtherNetlP module. Double-click to change the name and
reboot the robot before it takes effect.

Data model

The EtherNet/IP protocol data modes supported by different brand devices are slightly
different, and you can choose either big-endian mode or little-endian mode.

74610

7.4.6.1 DI Function Configuration

When the system detects that the corresponding digital input variable meets the trigger
conditions, it executes the corresponding usage function. Click to create a new function.
You can add multiple actions with the same variable and condition to accomplish the
effect of multiple actions.

Stop dragging: Disable manual dragging of the robot in the mode.
Power on: Enable the robot by powering it on.

Power on in rescue mode: Enable the robot in rescue mode, which temporarily
disables safety checks; Power off: Disable the robot by cutting off power.

Switch to automatic mode: The robot switches to the automatic operation program
mode.

Switch to manual mode: The robot switches to manual teaching mode.

Run the last saved program: Run the last saved program in the automatic operation
mode; Run the specified program: Run the program specified in the drop-down box

in the automatic operation mode.
Stop operation: The robot stops running the program.
Pause operation: The robot pauses the running program.

Continue running: Resume the paused program;

Version V1.0 Copyright @ Estun Codroid 101

Error reset: Clear the robot's error report;

Protective stop: Protective emergency stop of the robot;

7.4.6.2 DO Function Configuration

When the system detects that the trigger conditions are met, the corresponding digital
output function is executed. Click to create a new function configuration. Only one
operation can be added for the same variable.

Exception: When an abnormality occurs in the robot, the corresponding electrical
level is output.

Program running: The corresponding level is output when the robot program is

running;

Program pause: The robot outputs the corresponding level when the program is
paused;

At safety position: The robot outputs the corresponding level when it is at the safety
position.

7.4.7 MODBUS Master

Here, you can set the parameters of the MODBUS master (client). A connection can be
established between the local machine and the MODBUS slave (server) at the target IP
address. Each signal has a unique name and can thus be used in the program.

ModbusTCP Master

[2 Add Modbus Device

Equipment Name: | MODBUS_mb ‘ 5
S @ Adding new signals W Delete Device

IP Address: [192.168.1.201 ‘ Port: ‘ 502

Reconnection Count: — Modbus Packet Error: - Connection State: Offline

Type Address Name Value

. Read single discrete input register (] ‘ i MODBUS_m3gru8x8 - Delete
Frequency[Hz] | 1 MODBUS slave device address | 1

Response Time[ms]: -- Timeout: -- Request Failure: -- Actual Frequency: 1 Hz

Add device

This button can be used to add a new MODBUS slave device.
Delete device

This button can delete the MODBUS slave device and all its signals.

Device name

Version V1.0 Copyright @ Estun Codroid 102

The device name can be set to distinguish each device.
IP address

The IP address of the MODBUS slave device can be changed here.
Port

The port address of the MODBUS slave device can be changed here
Reconnection count

The number of times a TCP connection is closed and reconnected.
Modbus data pack error

The number of received data packets containing errors (i.e., invalid length, lost data, TCP
socket errors).

Connection status
TCP connection status.
Add signal
This button can add signals to the corresponding MODBUS slave device.
Delete signal
This button can delete the signal from the corresponding MODBUS slave device.
Type
Select the signal type. Available types include:

Read a single coil register (read output coil), read discrete input register (read input coil),
read a single holding register (read output register), read input register (read input
register), write a single coil register (write output coil), write a single holding register
(write output register).

Address

To display the address of the remote MODBUS slave device, you can select a different
address. The valid address depends on the manufacturer and the configuration of the
remote MODBUS slave device.

Name

Names can be assigned to signals. Signal names are used when the signals are utilized in
the program.

Frequency

It can be used to change the update frequency of the signal. The update frequency refers
to the frequency at which requests are sent to the remote MODBUS slave device to read
or write signal values. When the frequency is set to 0, the MODBUS request will be
initiated on demand using instructions in the program.

From device address

This text field can be used to set the specific slave device address for requests

Version V1.0 Copyright @ Estun Codroid 103

corresponding to a particular signal. The value must be within the range of 0 to 255, with
the default value being 255. If you need to change this value, it is recommended to first
consult the manual of the remote MODBUS device to verify that the function is normal
after the slave device address is changed.

Response time [ms]

The time between sending a MODBUS request and receiving a response is updated only
when the communication is active.

Overtime

The number of unresponded MODBUS requests.

Request Failed

The number of data packets that could not be sent due to an invalid socket status.
Actual frequency

The average frequency of signal status updates for the main station device (client). This
value is recalculated each time a response is received from the slave station device
(server).

Save

Save the settings and refresh all MODBUS connections. All MODBUS slave devices will be

disconnected and reconnected. All statistical information will be cleared.

7.4.8 Panel 10

The IO settings can enable the analog output on the control cabinet panel and set the

analog input mode.

When using the analog output port, a load must be connected; otherwise, the robot will

report an error. If it is not in use, the corresponding port must be turned off.

When using the analog input port, it is necessary to specify the usage mode, either
current mode or voltage mode; otherwise, the robot will report an error.

7.5 Log tab

The log module records some operation anomalies of users, provides relevant prompts,
and offers assistance in using the software. Meanwhile, when encountering problems, it
can display the corresponding window prompts for viewing, providing information to
professionals for obtaining help and resolving issues.

Version V1.0 Copyright @ Estun Codroid 104

PROJECT SETTING MANAGE [2 admin . 0

Number File Name Create Time File Size Operation

1 OutputCtrl.txt 2025-4-14 16:02:40 407.89 KB ¥ Download Log

2 OutputCtrl.1.txt 2025-4-14 10:45:46 96.42 KB ¥ Download Log

3 OutputCtrl.2.txt 2025-4-9 13:17:13 89.41KB ¥ Download Log

OutputCtrl.3.txt 2025-4-8 09:03:36 90.22 KB ¥ Download Log

OutputCtrl.4.txt 2025-4-7 09:19:29 367.67 KB ¥ Download Log

OutputCtrl.5.txt 2025-4-3 12:53:26 132.22 KB ¥ Download Log

OutputCtrl.6.txt 2025-4-3 10:32:28 145.94 KB ¥ Download Log

OutputCtrl.7.txt 2025-4-117:21:11 1MB Download Log

OutputCtrl.8.txt 2025-4-1 17:00:56 11112 KB ¥ Download Log

OutputCtrl.9.txt 2025-3-31 13:34:48 88.66 KB ¥ Download Log

Click the exclamation mark button at the top right corner of the program to view the
error message. If the button is flashing, it indicates that there is an error in the program
and the program will stop running.

. . . . D load L
Only the latest 10 entries are retained in the system log. Click the button

(log download) in the Logs tab to download this log message locally.

7.6 Management tab

The management interface can import or export some settings or engineering
parameters of the controller, as well as manage users.

PROJECT SETTING RECORD

User List Manage user

Import user config
Select the config to export
BHIRB (SN RESRAIER)

ES

Confirm Export

The meanings of the import and export configuration are as follows:
Parameter settings (take effect after restart)

Parameter settings in the Robot Settings tab.
Global variable

Global variables in robot engineering are not imported or exported along with the
project, so all users can manage them uniformly here.

Version V1.0 Copyright @ Estun Codroid 105

ModbusTCP Master Configuration (Effective after restart)

The ModbusTCP master configuration set by the user in the settings tab.

User List Manage user

Import user config

Select the config to export

[Exportcomprossionfierame ~~|dp

T2H(ER. DH. FIS. B2 EESN SASRRHAVEIER)

BHIZE (SN REHIBIER)

EREES

ModbusTCPIUAELE (S Sehkfa iz RIESS)

TH. 3. SRS (G R INEIER"

R E (S la WM ER!)

OB E(S AR EIER!)

Confirm Export

In the user list, the admin user can create and delete users here.

The initial accounts and passwords available are as follows. Different accounts have

different permissions. For details, please refer to the appendix.

Among the registered users, new users can be created and assigned usernames,

Account Password Level
user 123456 User
admin 123456 Administrator

passwords, and permission levels.

Version V1.0

Copyright @ Estun Codroid

106

Chapter 8 Introduction to Variables

8.1 Variable Overview

Different domains support different variable types, as described specifically below:
System domain: System-defined variables that cannot be edited.

Global domain: 10 data types, PLC data types, socket data types, position data types,
area data types, basic data types, clock data types, palletizing data types, system
data types.

Engineering domain: 10 data types, socket data types, position data types, basic data
types, palletizing data types, system data types.

The following "names" are reserved by the system. Names are not case-sensitive, and

users cannot create variables with the same name:

abs, acos, and, asin, assert, atan, break, ceil, collectgarbage, coroutine, cos, debug, deg, do,
dofile, else, elseif, end, error, exp, false, findEnd, floor, fmod, for, format, function, getAt,
getmetatable, goto, huge, if, in, io, ipairs, left, load, loadfile, local, log, math, max, min,
modf, next, nil, not, or, os, package, pairs, pcall, pi, print, rad, random, randomseed,
rawequal, rawget, rawset, real, repeat, require, return, reverse, right, select, strcmp,
setmetatable, sin, sqrt, string, table, tan, then, tonumber, tostring, true, type, until, while,
xpcall, Al, AO, APOS, APosToCPos, APosToStr, AREA, AreaActivate, AreaDeactivate,
ARRAYS, BitAnd, BitNeg, BitOr, BitXOr, BitLSH, BitRSH, BOOL, CalcTool, CalcCoord, CALL,
CenterPos, CLKRead, CLKReset, CLKStart, CLKStop, CLOCK, CompareAl, CompareSimAl,
CPOS, CPosToAPos, CPosToCPos, CPosToStr, DAPOS, DCPQOS, DI, DO, ELSE, ELSIF, ENDIF,
ENDWHILE, EXTCPC, GetCamPos, GetCurAPos, GetCurCPos, GetCurOverRide, GetDI8421,
GetMatrix, GetSimAlToVar, GetSimDI8421, GetSimDIToVar, GetTrackld, GOTO, Hand,
InertiaTensor, INT, IToStr, LABEL, LoadDyn, MovArch, MovC, MovCW, MovCircle,
MovCircleW, MovE, MovH, Mov], Mov]Rel, Mov]Search, MovL, MovLRel, MovLSearch,
MovLSync Mov]SyncQuit, MovLSyncQuit, MovLW, OnDistance, OnParameter,
PalletFromGet, PalletFromPut, PalletReset, PalletToGet, PalletToPut, PAYLOAD, PLCBOOL,
PLCDINT, PLCINT, PLCREAL, POLYHEDRON, PolyhedronAreaActivate,
PolyhedronAreaDeactivate, POSCFG, POSITIONER, PulseOut, PulseSimOut,
ReadModbusReg, REAL, RefRobotAxis, RET, RETURN, RToStr, RUN, SendMessage,
SetAxisVibraBLevel, SetAO, SetCartDyn, SetCoord, SetDIEdge, SetDO, SetDO8421,
SetExternalTCP, SetJointDyn, SetMotionMode, SetOverRide, SetPayload, SetPositioner,
SetRestorePC, SetRtInfo, SetRtToErr, SetRtWarning, SetMatrix, SetSimAQO, SetSimAOByVar,
SetSimDIEdge, SetSimDO, SetSimD08421, SetSimDOByVar, SetTargetPos, SetTool,
SetSyncoord, SimAl, SImAQ, SimDI, SImDO, SocketClose, SocketCreate, SocketReadInt,
SocketReadReal, SocketReadStr, SocketSendStr, SoftFloatStart, SoftFloatStop, SPEED, Stop,
STRING, StrTol, StrToR, SYNCOORD, SynCToUserC, TOOL, Tracking, TranStrToApos,
TranStrToCpos, TranStrTolnt, TranStrToReal, TrigCam, trimLeft, trimRight, USERCOOR, Wait,
WaitAl, WaitCondition, WaitConvDis, WaitDI, WaitDI8421, WaitFinish, WaitFinishCAM,
WaitSimAl, WaitSimDI, WaitSimDI8421, WaitWObj, WEAVE, WHILE, WriteModbusReg,

Version V1.0 Copyright @ Estun Codroid 107

ZONE, ToolOffset, UserOffset.

8.2 Variable

8.2.1 POSE

Store the absolute coordinate values and offset values of each axis in the Cartesian space

of the robot joint.

Parameter Parameter Data type Parameter Meaning
APOS jntposl real Angle of joint 1 axis.
Stores the jntpos2 real Angle of joint 2 axis.
Jo'lnt ar;g'e intpos3 real Angle of joint 3 axis.
values for jntpos4 real Angle of joint 4 axis.
each axis - -
under the jntpos5 real Angle of joint 5 shaft.
joint space. intpos6 real Angle of joint 6 axis.
CPOS X real The coordinate of the TCP point in the
Stores the x-direction on the reference coordinate
position of system.
the TCP point [y real The coordinate of the TCP point in the
under the . . .
_ y-direction on the reference coordinate
Cartesian
coordinate system. _ —
system. z real The coordinate of the TCP point in the
z-direction on the reference coordinate
system.
a(rx) real The Euler angle of rotation of the TCP
point with respect to the x-axis of the
fixed reference coordinate system.
b(ry) real The Euler angle of the rotation of the
TCP point with respect to the y-axis of
the fixed reference coordinate system.
c(rz) real Euler angle of rotation of the TCP point
with respect to the z-axis of the fixed
reference coordinate system.
DAPQOS djntposl real Angular offset of joint 1 axis.
Stores the djntpos?2 real Angular offset of joint 2 axis.
relaFve#)mt djntpos3 real Angular offset of joint 3 axis.
angie © ser djntpos4 real Angular offset of joint 4 axis.
for each axis prr—— I | P fio -
under the J.n pos rea Angular offset o J.o?nt 5 axis.
joint space. djntpos6 real Angular offset of joint 6.
DCPOS adx real The coordinate offset of the TCP point
Stores the in the x-direction on the reference
position of coordinate system.
the TCP point 75y real The coordinate offset of the TCP point
under the . . .
. in the y-direction on the reference
Cartesian di
coordinate coor matg system. .
system. dz real The coordinate offset of the TCP point
in the z direction on the reference
coordinate system.
da real The offset of the Euler angle of rotation
of the TCP point with respect to the x-
Version V1.0 Copyright @ Estun Codroid

108

axis of the reference coordinate system.
db real The Euler angle offset of the TCP point
rotated with respect to the y-axis of the
reference coordinate system.

dc real The offset of the Euler angle for the
rotation of the TCP point with respect to
the z-axis of the reference coordinate

system.
8.2.2 Basic Data Types
Parameter Data type Scope Remark
STRING String Global, Engineering, | String
Tasks
BOOL Boolean Global, Engineering, Numeric range: true, false
Tasks
INT Plastic Global, Engineering, Numeric range: -
Tasks 9999999999999~
999999999999999
REAL Real Global, Engineering, Numeric range: -
Tasks 99999999999~
999999999999999
BoolOneArray Boolean Global, Engineering, | Data length: 1~255
Arrays Tasks
IntOneArray Plastic Global, Engineering, | Data length: 1~255
Arrays Tasks
RealOneArray Real Arrays | Global, Engineering, Data length: 1~255
Tasks

8.2.3 SPEED

It is used to define the movement speed of the robot and external axes. For the
convenience of users, the system presets commonly used speed variables (system
variables that are not allowed to be modified by users), and at the same time, it supports
users to create, delete, modify and other operations on this variable in the three variable
scopes of global, project and program.

Parameter Data type Parameter Meaning

per real Joint Speed Percentage. Used to specify the speed of
movement during joint movement commands,
applicable to Mov] and other commands, value range
1%~100%.

tcp real TCP Linear Velocity. Define the linear velocity of the
robot end point, used for MovL, MovC and other linear
arc motion instructions.

ori real Spatial Rotation Velocity. Define the rotation speed of
robot end point attitude, used for MovL, MovC and
other linear circular motion instructions.

exj_| real External Axis Speed. Defines the speed of the external
linear axis motion.
exj_r real External Axis Angular Velocity. Defines the motion

speed of the external rotary axis.

Version V1.0 Copyright @ Estun Codroid 109

8.2.4 ACC

This parameter is used to define the motion acceleration of the robot and external axes. To
achieve a sufficiently fast motion speed, this parameter is usually adjusted, but it is not
recommended to set the value too high, as it may cause vibrations and even damage to

the joints after long-term operation.

Parameter Data type Parameter Meaning

joint real Joint Acceleration Hundred. Used to specify the motion
acceleration during joint motion commands, for
commands such as MovJ.

tcp real TCP Line Acceleration. Defines the line acceleration at
the robot's end point, used for MovL, MovC, and other
linear circular motion commands.

ori real Spatial Rotation Acceleration. Defines the rotational
acceleration of the robot's end point attitude, used for
MovL, MovC and other linear circular motion
instructions.

8.2.5 ZONE

It is used to define how a certain motion ends or the size of the turning area between two

motion trajectories. For the convenience of users, the system presets commonly used

transition variables (system variables that users are not allowed to modify), and at the

same time, it supports users to create, delete, modify and perform other operations on this

variable within the three variable scopes of global, project and program.

Parameter

Data type

Parameter Meaning

per

real

Turning percentage. Applies to motion commands such
as Mov],MovL,MovC, etc. Indicates how far away from
the target point the turn will start.

dis

real

Cartesian space turn area size. Used for MovL,MovC
and other linear arc motion instructions, defines the
size of the turn zone of the Cartesian space trajectory,
i.e., when the robot moves to dis millimeters away from
the target point, it starts to turn to move toward the
next target point, the unit is mm.

8.2.6 CLOCK

The value of CLOCK stores clock information.

Parameter Data type Parameter Meaning

state bool Enable state of the clock variable.
value int The count value of the clock variable.
8.2.7 Socket

The network connection Socket variable.

Version V1.0

Copyright @ Estun Codroid 110

Parameter Data type Parameter Meaning

Socket Z#R | String Non

8.2.8 INTERRUPT

Interrupt variable.

Parameter Data type Parameter Meaning
value String Non
8.2.9 LsScale

The LsScale type variable is used to record the gain ratio threshold parameters of each
joint axis, which helps to improve the low-speed jitter phenomenon of the robot within a
certain speed range. It is used in conjunction with the speed range threshold parameters.
The setting range is [100, 1000], with the unit being %. This variable can only be created
and modified in the global domain.

Parameter Data type Parameter Meaning

J1 int Gain ratio threshold for J1 axis in %.

J2 int Gain scale threshold value for J2 axis in %.

13 int Gain proportional threshold value for J3 axis in %.
J4 int Gain ratio threshold value for J4 axis in %.

J5 int Gain ratio threshold value for J5 axis in %.

J6 int Gain scale threshold for J6 axis in %.

8.2.10 LsThresh

The LsThresh type variable is used to record the speed range threshold parameters of
each joint axis, which is used to improve the low-speed jitter phenomenon of the robot
within a certain speed range segment. It is used in conjunction with the gain ratio
threshold parameter. The setting range is [10, 1000], with the unit of r/min. This variable
can only be created and modified in the global domain.

Parameter Data type Parameter Meaning

1 int Speed interval threshold for J1 axis, in r/min.

12 int Speed interval threshold for J2 axis, in r/min

13 int J3 axis speed interval threshold in r/min.

14 int Speed interval threshold for J4 axis in r/min.

J5 int Threshold value of the speed interval in r/min for the J5
axis.

J6 int Speed interval threshold in r/min for J6 axis

8.2.11 VibrationSuppression

Vibration Suppression Parameters: Vibration suppression parameters.

Parameter Data type Parameter Meaning

Frequency X | real Intrinsic frequency of vibration in the X direction
Frequency Y | real Intrinsic frequency of vibration in Y direction
Frequency Z | real Intrinsic frequency of vibration in the Z-direction

Version V1.0 Copyright @ Estun Codroid 111

Damping real Damping ratio in X direction
Ratio X
Damping real Damping ratio in Y direction
Ratio Y
Damping real Damping ratio in Z direction
Ratio Z

8.2.12 Matrix2

The Matrix2 type variable is used to record a two-dimensional array.

Parameter Data type Parameter Meaning
Matrix2 string Array name
Name

8.2.13 Matrix3

The Matrix2 type variable is used to record a two-dimensional array.

Parameter Data type Parameter Meaning
Matrix3 string Array name
Name

8.2.14 Matrix4

The Matrix2 type variable is used to record a two-dimensional array.

Parameter Data type Parameter Meaning
Matrix4 string Array name
Name

8.2.15 Matrix9

The Matrix2 type variable is used to record a two-dimensional array.

Parameter Data type Parameter Meaning
Matrix9 string Array name
Name

Chapter 9 Calibration

This chapter will describe the joint coordinate system, world coordinate system, user
coordinate system, tool coordinate system and their usage.

9.1 Joint coordinate system

The joint coordinate system or joint space refers to the independent movement of
robot joints, which is called joint motion.

Version V1.0 Copyright @ Estun Codroid 112

Power Off @ L'{‘} Rescue Current Coordinate:
Coordinate0

Manual Switch to Current Tool:
Mode automatic mode
Tool0

Current Payload:
Payload0

x: -180.971 mmi
y: 377.341 mm
z: 534.753 mm
a(rx): 176.575 deg
b(ry): 7.558 deg
c(rz): 8.880deg
mode: 0

Axis1: 85.508 deg
Axis2: -12.798 deg
Axis3: 81.534 deg
Axis4: -26.373 deg
Axis5: 83.458 deg
Axis6: -13.891 deg

~| & @I

TCP e«rollow coord
x y i a b c

X(W)

9.2 World coordinate system

The Cartesian coordinate system of the Codroid robot is a right-handed coordinate
system, and its Euler angle format is X-Y-Z fixed angles. For example, the pose [900mm,
200mm, 1200mm, 20°, 30°, 45°] means that it first moves to the position of x=900mm,
y=200mm, z=1200mm in the reference coordinate system, and then rotates the end TCP
point as the center of rotation. First, it rotates the end along the X-axis of the reference
coordinate system by 20°, then rotates the end along the Y-axis of the world coordinate
system by 30°, and finally rotates the end along the Z-axis of the world coordinate system
by 45°.

When leaving the factory, the robot is by default located at the position [0, 0, 0, 0, 0, 0] in
the world coordinate system, meaning that the pose of the robot's base coordinate
system coincides with that of the world coordinate system. The base of the robot is
oriented such that the Y-axis points in the negative direction and the Z-axis points

Version V1.0 Copyright @ Estun Codroid 113

towards the interior of the base in the robot's base coordinate system.

The installation of the robot can be selected from preset installation methods or
customized with its installation offset and installation rotation relative to the world
coordinate system.

9.3 Coordinate System and Calibration

Users can define the coordinate system. The user-defined coordinate system is offset
based on the world coordinate system. The offset values can be directly input by users on
the settings page or determined through the calibration function with assistance.

I

X(W)

When it is necessary to calibrate the user coordinate system, the "Coordinate System
Calibration" assistant can be used to create it.

Version V1.0 Copyright @ Estun Codroid 114

& Calibration

Coord
Calibrate

Coord Calibrate

R © Three-Point Calibration Method

Next Step

9.3.1 Three-point calibration method

Define the origin, the direction of the x+ axis and the direction of the y+ axis. The plane
is defined by the right-hand rule, so the z+ axis is the cross product of the x+ axis and
the y+ axis.

Coord Calibrate X

o = L | " © Three-Point Calibration Method
°o . — i
9.3.1.1 Start calibration

Define the origin of the user coordinate system. Move the robot's TCP to the origin of

)))))) Origin Teach
the coordinate system to be defined by point-to-point motion, click and

then proceed to the next step.

Version V1.0 Copyright @ Estun Codroid 115

Coord Calibrate X

X: -180.9708788 mm a: 176.5750693¢ deg
y: 377.34112405 mm b: 7.5584737764 deg
\
Pl
z: 534.7527174€ mm c: 8.8802323311 deg

s

2. Define the positive x-direction of the user coordinate system. Move the robot's TCP

x+ Teach
to the positive x-direction of the coordinate system to be defined and click
then proceed to the next step.
Coord Calibrate ><
x: -94 03831752 mm a: 176 5749728€ deg
,,"""‘ y: 377.3452967€ mm b: 75585921132 deg
P2
z: 53474708621 mm C: B .880281215€ deg

3. Define the y+ direction of the user coordinate system. Move the robot's TCP to the y

y+ leach

positive direction of the coordinate system to be defined and click Then next
step.

9.3.1.2 Calibration successful

After clicking the confirmation button, the specific values of the successfully calibrated
coordinate system will be automatically filled in the selected coordinate system number.

Coord Calibrate ><
Number: | 1
1 Calibration Result
X 2 32746648 a: 0.006386225034151806
y: 3 7813758 b: 0.010098283569774155
b 4 12130858 Lo 0.003274440259636563
5
4

Version V1.0 Copyright @ Estun Codroid 116

9.3.1.3 Calibration failed

If the calibration result does not show any values and indicates calibration failure, please
recalibrate and note that among the three points defined for calibration, namely the

origin and x+ and y+, avoid having two or more identical points.

Coord Calibrate X
Number: 1

Calibration Result

x a:
y b:
z =

—_
@ User coordinate system calibration X
failed.

9.3.1.4 List of coordinate systems

In the Tools, Load, and Coordinate System options in the settings interface, all coordinate
systems are recorded. Here, you can view or edit the values.

ESTUN PROJECT SETTING RECORD MANAGE 2 sdmin ()
EEEEEEE —— o
Bie Tool,Payload Coordinate
Tool,Payload,Coor
Safety > Toal (Unit: kgmm)
Move
> Payload (Unit: kg,mm}

Register Communi

0 v Coordinate (Unit: mm,deg)

e O T S S S N

10 on Board

-94.03831752746 377.34529678137 534.7470862130(0. 34 0.010098283569; 0.003

0

0
0 0 0
o
0

& v s W N = o

0

0 [
0 0
0]
0 0 0 o 0 0

9.3.2 Use the user coordinate system

9.3.2.1 Use the user coordinate system when jogging.

When performing point-by-point movement of the robot at the end, you can choose to
move along the current coordinate system. If the current coordinate system is selected as
the user coordinate system, the point-by-point movement can be carried out along the

Version V1.0 Copyright @ Estun Codroid 117

user coordinate system.

Current Coordinate:
Coordinatel

Follow tool

9.3.2.2 Switching coordinate systems in the program

Add the SetCoord command in the program tree and select the defined user coordinate
system from the drop-down menu of "Coordinate System".

9.4 Tools and Calibration

Users can create new tool variables. The tool coordinate system is offset based on the
default tool coordinate system (NOTOOL) at the end of the flange. The offset values can
be directly input by the user or determined through auxiliary calibration. The origin of the
default tool coordinate system is located at the center of the flange end, with the Z-axis
pointing outward from the flange and the Y-axis pointing towards the installation
locating pin hole.

Version V1.0 Copyright @ Estun Codroid 118

z(T)

x(T)

When it is necessary to calibrate the tool coordinate system, the four-direction
calibration method of "Tool Calibration” can be used to assist in calculating the position
offset, or the one-point calibration method can be used to assist in calculating the
rotation angle.

@ Calibration

Tool Calibrate

Tool Calibrate

© Four-Point Calibration Method(position)

One-Point Calibration Method(Posture)

9.4.1 Four-direction calibration method

Manually move the robot (by point-to-point or dragging) to four different poses. Each
time, make the tool tip touch the same needle tip placed in space and click the
"Direction Teaching" button. After completing the four poses, the offset value of TCP
relative to the center of the tool output flange can be obtained.

Version V1.0 Copyright @ Estun Codroid 119

Tool Calibrate X

One-Point Calibration Method(Posture)

Next Step

9.4.1.1 Start calibration

a) The mobile robot brings the TCP (Tool Center Point) into contact with the tip of the
needle placed in space.

b) Click the
actual robot position.

(orientation 1 teaching) button to record the current

Tool Calibrate ><
X: -33.75085548 mm a: 176.57561982 deg
y: 431.88032901 mm b: 75600221461 deg

z: 534.7425382Z mm €. B.878449528€ deg

Direction 1 Teach Next Step

c) Click button (next) to repeat steps 1 and 2 until the fourth point, then

click button m (OK) to complete the direction instruction.

9.4.1.2 Calibration succussed

After clicking the "Confirm" button, the X, y, and z values of the successfully calibrated
tool will be automatically filled in the selected tool number.

Version V1.0 Copyright @ Estun Codroid 120

Tool Calibrate X

Number: 1

1 Calibration Result
x: > 16.504747421583
¥ 3 -45.030702658525634
= 4 73.33150758489201
5
= . =Z3
7

9.4.1.3 Calibration failed

If the "Calibration TOOL" window shows no result and prompts "4-point calibration
failed", it indicates that the calibration has failed.

Tool Calibrate ><
Number: 1

Calibration Result

@ 4-point calibration failed. X

Please start the calibration again and make sure that:
the four pose changes are large enough
the needle tips are aligned (the tool center point is in sufficient contact with the

needle tips in space).

9.4.2 One-point calibration method (attitude)

After completing the four-direction calibration method (to obtain the translational
relationship of the TCP relative to the center of the tool output flange), the certain
calibration method (attitude) can be started to obtain the rotational relationship of the
TCP relative to the center of the tool output flange.

Version V1.0 Copyright @ Estun Codroid 121

Tool Calibrate X

TZ

Four-Point Calibration Method(position)
TX ¥

Next Step

9.4.2.1 Start calibration

Move the robot so that the desired tool coordinate system orientation coincides with

e
= —

the robot's world coordinate system orientation, and click the ~ ~ (orientation
teaching) button to complete the Orientation Teaching.

Tool Calibrate X

X -228.0421503 mm a: 9.4892027766 deg
g
| 4
¥: 41969742860 mm b: 0636142364 deg
X
TZ
z: 840.12855664 mm c: -5.699225736 deg

he world coordinate system needs to be in the same direction as the TCP coordinate system, otherwise the calibration will fail

9.4.2.2 Calibration results

When calibrating the posture, the robot cannot verify the accuracy. The user can visually
check by manually moving the tool coordinate system.

After obtaining the translation and rotation of the TCP (Tool Center Point) relative to the
center of the tool output flange through the execution of the "Four-Point Calibration
Method" and the "One-Point Calibration Method (Attitude)", a complete tool
coordinate system is established, and the calibration is completed.

Version V1.0 Copyright @ Estun Codroid 122

Tool Calibrate X

Number: | 1

1 Calibration Result
a: 2 -9.38222956115559
b: 3 1.5625528181185604
o= 4 5.51819702571345
o be in the same direction as the TCP coordinate system, otherwise the calibration will fail.
6
7

9.4.3 Use the tool coordinate system

9.4.3.1 Use the tool coordinate system when jogging.

Current Tool:
ToolQ

Follow coord

When performing point-to-point movement of the robot at the end, you can choose to
move along the tool coordinate system. Select the current tool as the target tool
coordinate system to move along the tool coordinate system. The current tool can be
switched in the Settings tab.

9.4.3.2 Tools used in the program

Add the "SetTool" instruction in the program tree and select the defined tool
parameters from the drop-down menu.

Version V1.0 Copyright @ Estun Codroid 123

Version V1.0 Copyright @ Estun Codroid 124

Chapter 10 Instruction Introduction

10.1 Displacement Instructions

10.1.1 MovJ

This is joint movement. This instruction indicates that the robot's joints perform point-to-
point motion, and the end trajectory of the robot is an irregular curve. Double-click the
added Mov]J instruction or select the parameters in the programming instruction details
area and click Mov] to configure the instruction parameters.

1. MovJ

o g [r—
s m

Copy Comments Delete

Target Location : P1

avos %
Speed > V100 "+—
Acceleration : ACC100 +
Transition Type : FINE
Transition Value : ZONEO —|—
Attr Settings N

Desc

Parameter Description

Target position | Points that have been shown and taught can be selected in the
Target Position option; only APOS and CPQOS can be added.

Target speed Set as a SPEED type variable, you can choose the system
predefined value or create your own; where the target speed is a
percentage.

Acceleration See Variable Management for details on creating and setting

variables of type SPEED.

Transition Type | Set the variable as ACC, you can choose the predefined value or
create it by yourself;

Transition See Variable Management for details on creating and setting
Value variables of type ACC.
10.1.2 MovL

The MovL instruction is a linear motion command. By using this command, the TCP point

Version V1.0 Copyright @ Estun Codroid 125

of the robot can move linearly to the target position at the set speed. If the starting and
ending postures of the movement are different, the posture will rotate synchronously with
the position to the ending posture during the movement. Compared with joint motion,
linear movement may pass through singular points. Double-click the added MovL
instruction or select the parameters in the programming instruction details area and click
MovL to configure the instruction parameters.

o E Mol 1. MovL

Lo []

Copy Comments Delete
Target Location : P2
Speed : V100
Acceleration : ACC100 +
Transition Type : FINE
Attr Settings AV

Desc

Parameter Description

Target position | Points that have been shown and taught can be selected in the
Target Position option; only APOS and CPQOS can be added.

Target speed Set as SPEED type variable, you can choose the system predefined
value or create it by yourself; in which, the target speed is an
absolute value, unit mm/s.

Acceleration The creation and setting of SPEED type variables are described in
the Variables section.

Transition Type | The ACC variable can be predefined by the system or created by

yourself;
Transition See the Variable Management section for details on creating and
Value setting variables of type ACC.

10.1.3 MovC

The completion of an arc instruction must involve three poses, and the positions of these
three poses in space must not be on the same straight line. When using this instruction,
the robot's TCP point moves in an arc from the starting position through the intermediate
position to the target position. The starting position is the end point of the previous
movement instruction. When using the MoveC instruction, if the starting and ending
poses are different, the pose will rotate synchronously with the position during the
movement to reach the ending pose, but it may not pass through the intermediate pose.
Compared with joint movement, arc movement may pass through singular points.
Double-click the added MoveC instruction or select the parameters in the programming
instruction details area and click MoveC to configure the instruction parameters.

Version V1.0 Copyright @ Estun Codroid 126

1. MovC
D@
L m
Copy Comments Delete
Middle Point : P3
APOS @ X
Target Location : P4
APOS 9 X
Speed : V100 -+
Acceleration : ACC100 -l—
Transition Type : FINE
Attr Settings N

Desc

Parameter Description
Intermediate The position of the middle auxiliary point of the arc, the type can
position only be APOS or CPOS.

Target position

The position of the end point of the arc, the type can only be
APOS or CPOS.

Target speed

Set as SPEED variable, you can choose the system predefined
value or create it by yourself; in which, the target speed is an
absolute value, the unit is mm/s.

Acceleration

The creation and setting of SPEED type variables are described in
the Variables section.

Transition Type

The ACC variable can be predefined by the system or created by
yourself;

Transition
Value

See the Variable Management section for details on creating and
setting variables of type ACC.

10.1.4 MovCircle

The full circle instruction refers to the movement of the robot's TCP point from the

starting position to the target position via an intermediate position, with the three

positions in the pose space not being collinear. When using this instruction, the robot's

TCP point performs a full circle movement from the starting position to the target

position via the intermediate position, and the posture remains unchanged during the full

circle movement. Compared with joint movement, the full circle movement may pass

through singular points. Double-click the added MovCircle instruction or select the

parameters in the programming instruction details area and click MoveCircle to configure

the instruction parameters.

Version V1.0

Copyright @ Estun Codroid

127

II 1. MovCircle

s 1”’: i
L7 m

Copy Comments Delete

Middle Point : P5

Target Location : P6

Speed : V100

Acceleration : ACC100 +
Transition Type : FINE

Attr Settings S

Desc

Parameter Description
Intermediate The position of the middle auxiliary point of the arc, the type can
position be APOS or CPOS.

Target position

The position of the end point of the arc, the type can be APOS or
CPOS.

Target speed

Set as SPEED type variable, you can choose the system predefined
value or create it by yourself; among them, the target speed is an
absolute value, unit mm/s.

Acceleration

The creation and setting of SPEED type variables are described in
the Variables section.

Transition Type

The ACC variable can be predefined by the system or created by
yourself;

Transition
Value

For details on the creation and setting of ACC type variables, see
Variable Management.

10.1.5 MovJRel

Mov]Rel is an interpolation relative offset instruction. This instruction always takes the
current robot position or the target position of the previous motion instruction as the

starting position, and then the robot moves relatively by the specified offset.

Version V1.0

Copyright @ Estun Codroid

128

1. MovJRel

£ .

Ly m

Copy Comments Delete
Target Location : PT
Speed : V100
Acceleration : ACC100 +
Transition Type : FINE
Transition Value : ZONEO +
Attr Settings N

Desc

Parameter Description

Target Relative | The position increment that the robot is to move when executing
Position this command can only be added to DAPOS.

Target speed The setting is a variable of type SPEED, which can be either a

system predefined value or created by yourself; where the target
speed is a percentage.

Acceleration

See the Variables section for details on creating and setting
variables of type SPEED.

Transition Type

Set the variable to ACC, which can be predefined by the system or
created by yourself;

Transition
Value

See the Variable Management section for details on creating and
setting variables of type ACC.

10.1.6 MovLRel

MovLRel interpolation relative offset instruction. This instruction always takes the current

robot position or the target of the previous motion instruction as the reference.

The position is the starting position, and then the robot performs an offset movement

relative to the coordinate system or the tool.

Version V1.0

Copyright @ Estun Codroid

129

1. MovLRel

% = .
| g m

Capy Comments Delete
Target Location : P8
Reference
Coord
Coordinates
Speed : V100 +
Acceleration : ACC100 +
Transition Type : FINE
Attr Settings L

Desc

Parameter

Description

Target position

The position increment that the robot is to move when this
command is executed can only be added to the DCPOS.

Reference Coordinate system offset or tool offset selection;
coordinates
Target speed - Coord: offset relative to the current user coordinate system;

Acceleration

- Tool: offset relative to the tool coordinate system, i.e. reference
Tx, Ty, Tz translation or rotation.

Transition type

Set as SPEED type variable, you can choose the system predefined
value or create it by yourself; among them, the target speed is the
absolute value, the unit is mm/s.

Transition
value

The creation and setting of SPEED type variables are described in
the Variables section.

10.1.7 MovLSearch

The positioning command refers to performing IO detection or torque detection when

executing this MovL command.

Version V1.0

Copyright @ Estun Codroid

130

MovLSearch || 1. MovLSearch

= - =

= L m

Copy Comments Delete
Target Location : P9

& ox

Speed ; V100
Acceleration ! ACC100 —|-
Test Type } DITrig
Search Index : 0
Search Value 0
Stop Time 0 ms
Result Value : -

Search Pos

Parameter Description

Target position | You can select the points that have been shown and taught in the
target position option; only APOS and CPOS can be added,
DAPOS and DCPOS are not selectable.

Target speed Set as SPEED type variable, you can choose the system predefined
value or create it by yourself; among them, the target speed is the
absolute value, unit mm/s.

Acceleration The creation and setting of SPEED type variables are described in
the Variables section.

Detection Type | The ACC variable can be predefined by the system or created by
yourself;

Trigger Index For details on the creation and setting of ACC type variables, see
the Variable Management.

Trigger Value DITrig: Physical digital 10 input detection.

Deceleration AlTrig: Physical analog 10 input detection.

time

Return Value For InputTrig, this parameter indicates the 10 port number to be
detected.

Successful For TorqTirg, this parameter indicates the axis number to be

position detected.

Jump node For InputTrig, the threshold for IO detection. For TorqTirg, the

threshold for torque detection in thousandths of the rated torque.

10.1.8 AddDo

The AddDO instruction must be placed after motion instructions, including Mov], MovL,
MovC, MovCircle, Mov]Rel, and MovLRel. This instruction is mainly used to ensure that the
transition between two motion instructions is not interrupted. If AddDO is added between
two motion instructions, the IO operations in its sub-controls will not interrupt the transition;
otherwise, the transition value of the previous motion instruction will not take effect.

Version V1.0 Copyright @ Estun Codroid 131

After the robot has executed this instruction, it can perform IO operations. The AddDO
instruction must have sub-controls added, and the sub-controls can only be: SetDO, SetAO,
SetSImDO, SetSimAOQO, SetD08421, SetSimD0O8421.

2. AddDo
IR |
L m
Copy Comments Delete
Attr Settings ~

Desc

10.1.9 MovTraj

Run the specified drag trajectory. Before running the trajectory, the robot must be at the
starting point of the trajectory. You can use the GetTrajStartPoint instruction to obtain the
starting point position and use the Mov] instruction to move to that point.

Parameter Description

Trajectory The track to be run.

Speed The running speed multiplier to run the trajectory, based on the
multiplier speed at the time of dragging and dropping.

@
To run a trajectory you can use the E button on the shortcut menu bar to open the
trajectory editor. After clicking “Enable Trajectory Recording”, press the button of Drag &
Drop in manual mode to start recording the robot's trajectory, release the button to stop
recording, and click the Save button to save the most recent drag & drop trajectory. After
selecting a trajectory, long press “Run to Start” to run to the starting point of the
trajectory, and long press “Run Trajectory” to run the trajectory.

10.2 Logical Instructions

10.2.1 GoTo

The GOTO instruction is used to jump to different parts of a program.

10.2.2 I

The IF instruction is used for conditional judgment expression jump control, and the
result of its judgment expression must be of type Bool. When the result of the conditional
judgment expression is true, the program executes the content of the program block
under the IF.

Version V1.0 Copyright @ Estun Codroid 132

Type

Data Type Constant

Constant Value :

In the figure, 1 represents the overall expression, and you can add expressions by
selecting the + sign in the 3 boxes within the frame. 2 is the expression currently being
edited. The parameter editing of the expression is as follows:

Expression type Description

value Includes constant values and variable values. Constant values
currently only support numeric quantities with true and false, while
variables can choose from the basic variables provided, and
currently include all 10 signals.

operator Operators include logical operators with or without and various
math operators such as addition, subtraction, multiplication and
division.

function Provide commonly used math functions including sine, cosine,

integer, remainder and other functions.

10.2.3 Elself

The ELSIF instruction depends on the IF instruction and follows immediately after the IF
control. When the IF logic is not satisfied, the ELSIF logic is evaluated. The method of
setting the ELSIF expression is the same as that of setting the IF expression.

Version V1.0 Copyright @ Estun Codroid 133

1 i

& i
2 = Movl

i

° l: I Elself

4 5 MovL :

10.2.4 Otherwise

3. Elself

Lo []

Copy Comments Delete

Conditional expression

Click on the node and edit the following form.

posalue J6

Edit expression

Type 3 Value
Data Type Variable
Select Var : pos / value

The ELSE instruction depends on the IF or ELSIF instruction and follows immediately after
the IF or ELSIF control. It is executed when the conditions of the IF or ELSIF instructions

are not met. The ELSE instruction has no parameter

=

Else

-

10.2.5 While

configuration.

The WHILE instruction repeatedly executes the sub-statement when the condition is met.

The loop control expression must be of the BOOL type.

The parameters of the expression are edited as follows:

Version V1.0 Copyright @ Estun Codroid

134

o .l While 1. While
> o —
I oy m

—
=l MovC Copy Comments Delete

(]

w

Conditional expression N

M Click on the node and edit the following form.

hang value [

Edit expression

~

Type) Value
Data Type Variable
Select Var : hang / value

Expression type Description

value Includes constant values and variable values. Constant values
currently only support numeric quantities with true and false, while
variables can choose from the basic variables provided, and
currently include all 10 signals.

operator Operators include logical operators with or without and various
math operators such as addition, subtraction, multiplication and
division.

function Provide commonly used math functions including sine, cosine,

integer, remainder and other functions.

10.2.6... =...

Create an expression to assign a value to a certain variable. Currently, the assignment
instruction supports assigning values to all IO and variables of INT, BOOL, and REAL

types. Its configuration interface is as follows:

o = T o=
B T =
E Lo i
Copy Comments Delete
Conditional expression %

Click on the node and edit the following form.

INTO.value =B @

Edit expression

Type = Value
Data Type Constant
Constant Value : 5

10.2.7 RETURN

Version V1.0 Copyright @ Estun Codroid 135

Return instruction. Generally, after executing this instruction, the program jumps to the
end of the program. If the RETURN instruction is used in a subroutine called by the CALL
instruction, it returns to the program one level above the CALL instruction. For example, if
the RETURN instruction is used in a subroutine called by the main program, it will return
to the main program.

10.2.8 CALL

The call instruction makes the current program jump to another subroutine within the
same project. After the subroutine is executed, it jumps back to the current program.
Clicking on the name of the current program will bring up a drop-down menu where you
can switch the currently edited program.

@ CALL 1. CALL
> 1= e
L m
Copy Comments Delete
Bin ~
Task : subroutine2
10.2.9 RUN

The sub-task parallel running instruction enables the robot to run sub-tasks in parallel
while performing the main task. The tasks to be run must be in the same project.

o RUN 1. RUN
= i —1
E Ly m
Copy Comments Delete
Bind ~
Task : sub3
10.2.10 KILL

The instruction to stop concurrently running programs (tasks) enables the robot to halt
other programs while running the current one, and the programs to be stopped must
be in the same project and in a running state.

10.2.11 Labeling

Version V1.0 Copyright @ Estun Codroid 136

The Label instruction is used to define the target for GOTO jumps.

10.3 Flow Control Instructions

10.3.1 Wait

It is used to set the waiting time for the robot, with the time unit being milliseconds and
it can be of the int constant type.

o ! Wait 1. Wait

. " —3
= Lo m
Copy Comments Delete
Time 4 1000 ms
Attr Settings ~

Desc

10.3.2 WaitFinish

It is used to synchronize the robot's movement and program execution. The robot will
directly transition to execute the next instruction when the previous instruction reaches
the trigger progress. When adding the WaitFinish instruction, sub-controls must be
added. Sub-controls can be SetDO or SetAO and their similar instructions. As shown in
the example program, the SetDO instruction will be triggered when the first MovL
instruction reaches 20% of its execution. After the first MovL instruction is completed, it
will directly transition to execute the second MovlL instruction. If the WaitFinish instruction
is deleted, the SetDO will be executed after the first MovL instruction is completed, and
then the second Movl instruction will be executed. In this case, there is no transition
between the two MovL instructions, and there will be a pause.

o ‘j@ WaitEinish 1. WaitFinish
. —
Lo m
Copy Comments Delete
Trigger Progress : 100 %
Attr Settings v

Desc

Parameter Description

Trigger progress | Percentage of runtime when the previous move instruction triggers a child
control in WaitFinish.

10.3.3 WaitCondition

Version V1.0 Copyright @ Estun Codroid 137

Set the conditions for the robot to wait. If the conditions are not met within the set time,
a timeout status will be returned. The next instruction will be executed only when the
"discrimination condition" is true; otherwise, the program will continue to wait until the

expression is true.

1 g! MovL 2. WaitCondition

7]
: - : L7
o % A eRehEy : Copy Comments Delete
Time 3 1000 ms
4 5 MovL Interrupt % Reset Timer
Timeout ¥ hang é?
Label E +
Bind O
jump node | Label
Conditional expression s
Click on the node and edit the following

rorm.

true [&)

Edit expression

Type £ Value

Parameter Description

Time The amount of time, in ms, required to execute the wait.

Timeout value | If the value of this parameter is O, it will force the system to wait
until the discriminant condition is true before continuing to execute
the next instruction.

Jump Node If the value of this parameter is non-zero, the system will skip the
instruction and continue to execute the next instruction after
waiting for the given amount of time, even if the discriminating
condition is still not true.

Conditional Select a variable and assign a value to it under the following two
expression conditions.

10.4 1O Instructions

10.4.1 SetDO

Set the digital output ports to the TRUE (1) or FALSE (0) state. Here, DO0-DO15 represent
the 16 digital output ports of the control cabinet, DIO-DI15 represent the 16 input ports
of the control cabinet, and switchO-switch3 indicate the status of the buttons at the

robot's end effector.

Version V1.0 Copyright @ Estun Codroid 138

1. SetDO

L []

Copy Comments Delete
Port i DOO0 l
Set Value 3 1
Parameter Description
Port Sets the port number of the digital output DO.
Setting value Sets the port value, with 0 indicating a high level and 1 indicating
a low level.
10.4.2 SetAO

Set the analog output ports (AO0-AQO3) to a certain value within the range of 4mA to
20mA.

o 1. SetAO
L (1]
Copy Comments Delete
Port : AOD I
Set Value s 4
Parameter Description
Port Sets the port number of the digital output AO.
Setting value Set port value, only current is supported, range 4mA-20mA
10.4.3 WaitDlI

This instruction is used to wait for the status of a digital input (DI) port for a specified
duration. If the waiting condition is met within the set duration, the program continues to
execute downward; if the condition is not met within the set duration, the timeout
judgment value is set to 1 and the program jumps to the jump node.

Version V1.0 Copyright @ Estun Codroid 139

https://cn.bing.com/dict/search?q=setting&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=value&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=setting&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=value&FORM=BDVSP6&cc=cn

II 1. WaitDI

LS [1]

Label

Copy Comments Delete
Port 2 DIO
Port Value : High Level
Time : 1000 ms
Interrupt : ResetTimer
Timeout : hang 4+
Bind b
jump node : | Label I
Parameter Description
Port Variables Input port number to wait for.
Port Value Digital input port level to wait for.

Duration (ms) The unit of time to wait for the signal to change is ms.

Timeout value Return the result of instruction execution to the variable set in the
timeout value, the timeout value variable can only be INT type

variable.

Jump node When a signal is successfully waited for within the waiting time, the
running value of the timeout value will be set to 0;

10.4.4 WaitDI8421

This instruction is used to wait for a combination of states of a group of consecutive
digital input (DI) ports within a specified duration. If the waiting condition is met within
the set duration, the program continues to execute downward; if the condition is not met
within the set duration, the timeout judgment value becomes 1, and the program jumps
to the jump node.

© | weinisa [I 1. WaitDI8421
" [i]
. IE L 1]
abe Copy Comments Delete
Start Port
End Port
Time 4 1000 ms
Interrupt 4 Reset Timer
8421 Value 0
Timeout : hang E +
Bind N
jump node Label

Version V1.0 Copyright @ Estun Codroid 140

Parameter Description

Starting Port Starting port number of the continuous DI port for the segment,
indicating the low bit of the 8421 conversion value

End Port End port number of the continuous DI port for the segment.
Indicates the high bit of the 8421 conversion value

Time(ms) The length of time to wait for the DI signal of this group of digital
inputs, which can be of int constant type in ms.

8421 Value Convert the value of this segment of consecutive DI ports to a

decimal number according to the 8421 rule, and the condition is
considered satisfied if it is equal to the VALUE value.

Timeout value | For example, if the start port is 0 and the end port is 2, and the
8421 value is set to 4, the condition is said to be satisfied when DIO
is0,DIlis0,and DIZ is 1.

Jump Node The result of the instruction execution is returned to the variable set
in the timeout value, and the timeout value variable can only be an
INT type variable.

10.4.5 WaitAl

This instruction is used to wait for the status of an analog input (Al) port for a specified
duration. If the waiting condition is met within the set duration, the program continues to
execute downward; if the condition is not met within the set duration, the timeout
judgment value is set to 1 and the program jumps to the jump node.

o WaitAl 1. WaitAl
El ¥ 1]
Label
Copy Comments Delete
Port
Set Value : 4
Time z 1000 ms
Interrupt : Reset Timer
Timeout | hang _:rr] <|»
Bind N
jump node Label
Parameter Description
Port Variables | The analog input port number to be waited for.
Port Value The analog input port current value (4mA-20mA) to wait for.

Duration (ms) The unit of time to wait for signal conversion is ms.

Timeout value Returns the result of command execution to the variable set in the
timeout value, which can be an INT type variable only.

Jump node When a signal is successfully waited for within the waiting time, the
running value of the timeout value will be set to 0;

10.4.6 GetDI8421

Version V1.0 Copyright @ Estun Codroid 141

This command is used to obtain the status of a continuous section of DI ports (treated as

binary data) and return it as a decimal number.

o GetDIBA21 1. GetDI8421
LJ [i]
Copy Comments Delete
Start Port DIO
End Port DI2
Return Value : int1 (& -
Parameter Description
Starting Port Start DI port number you want to acquire, the lowest bit of the
8421 value.
End Port The end DI port number you want to get, the highest bit of the
8421 value.
Return Value INT type variable, the program runtime will get the port status in
binary to decimal conversion and then pass into the int variable.

10.4.7 GetDO8421

This command is used to obtain the status of a continuous section of DI ports (treated as
binary data) and return it as a decimal number.

o GetDO8421 1. GetDO8421
L o
Copy Comments Delete
Start Port : DO0
End Port : DO3
Return Value : int2 ﬁ +
Parameter Description
Starting Port Start DO port number you want to acquire, the lowest bit of the
8421 value.
End Port The end DO port number you want to get, the highest bit of the
8421 value.
Return Value INT type variable, the program runtime will get the port status in
binary to decimal conversion and then pass into the int variable.

10.4.8 SetD0O8421

Set a continuous DO port status (regard it as a binary data segment), and convert the
input decimal number into a binary number to set it on the specified DO port.

Version V1.0 Copyright @ Estun Codroid 142

1. SetDO8421

Lo

SetDO8421

Copy Comments Delete

Start Port 5 Doo

End Port £ Do2

Set Value 3 1
Parameter Description
Starting Port The low bit when the desired value is transmitted in binary.
End Port The high bit when the desired setting value is transmitted in

binary.

Return Value The decimal setting value of the desired port output.
10.4.9 GetDO

This command is used to obtain the status of the DO port and return it as a binary

number.

o -: % . 1. GetDO
L7 []
Copy Comments Delete
Port E DO1
Variable z sensor @ +
Parameter Description
Port The DO port from which you want to get the value.
Variable The binary value that you want the port to output.
10.4.10 GetDI

This command is used to obtain the status of the DI port and return it as a binary number.

1. GetDI
IR |
L 1]
Copy Comments Delete
Port ; Di2

Variable : ‘rsensm | (4 —+

Parameter Description

Port The DI port from which you want to get the value.
Variable The binary value that you want the port to output.
10.4.11 GetAO

Version V1.0 Copyright @ Estun Codroid 143

This command is used to obtain the status of the AO port and return it as a decimal

fraction.

o 1. GetAQ
L [i]
Copy Comments Delete
Port] AD1
Variable : anglo @
Parameter Description
Port The AO port that needs to get the value.
Variable Decimal decimal value of the desired port output.
10.4.12 GetAl

This command is used to obtain the status of the Al port and return it as a decimal

fraction.

° 1. GetAl
L [i]
Copy Comments Delete
Port : Al
Variable £ anglo J @ -‘[—
Parameter Description
Port The Al port that needs to get the value.
Variable The binary value that you want the port to output.
10.5 Set instructions
10.5.1 SetTool
Set the tool parameter command. Switch to this tool parameter.
@ . 1. SetTool
LJ (1]
Copy Comments Delete
Tool 3 0

Parameter Description
Tool param Change to the selected tool number.
Version V1.0 Copyright @ Estun Codroid

144

10.5.2 SetCoord

Set the user coordinate system command. Switch to this user coordinate system.

1. SetCoord

Lo 1]
Caopy Comments Delete
Coord] [1 l
Parameter Description
Coordinate Changed to select the variable number of the coordinate system that has
system been created for the selection.
10.5.3 SetPayload

Select the workpiece load parameter instruction. Switch to this workpiece load parameter.

1. SetPayload

Lo o
Copy Comments Delete
Payload ; I 3 I
Parameter Description
Workpiece Load | Change to Select to select the load variable number that has been
created.
10.5.4 Stop

This command is used to stop the execution of all active programs.

10.5.5 EnaVibraSuppr

This command is used to enable vibration suppression.

10.5.6 DisVibraSuppr

This command is used to disable the servo vibration suppression.

10.5.7 ClsDectLevel

This command is used to set the sensitivity of collision detection.

Version V1.0 Copyright @ Estun Codroid 145

10.6 Position Operation Instructions

10.6.1 GetCurAPos

This instruction is used to obtain the current position in the joint coordinate system and
assign it to an Apos type variable. You can click on +APQOS to add an Apos type variable.

o GetCurAPos 1. GetCurAPos
T T
L7 [11]
Copy Comments Delete
Storage Location: P1

@ o

Parameter Description

Storage location | Current Apos value variable.

10.6.2 GetCurCPos

This command is used to obtain the Cartesian space position in the current reference
coordinate system and assign it to a variable of type Cpos. You can click +CPOS to add a
variable of type APos.

o GetCurCPos 1. GetCurCPos
il
L 1]
Capy Comments Delete
Storage Location: p2

9/

Parameter Description

Storage location | Current Cpos value variable.

10.6.3 APosToCPos

The robot position point conversion instruction, given the APos point under the base
coordinate system, and the reference coordinate system and tool parameters of the
target CPos point to be converted, can get the value of the CPos point with tool
parameters under the target coordinate system.

Version V1.0 Copyright @ Estun Codroid 146

o APosToCPos

1. APosToCPos

t (ol e
L m
Copy Comments Delete
Transition start P1
" ex
Tool 2 0
Coord 3 Default
Transition end P3
S 9
Parameter Description
Pre-conversion | Apos variable before conversion
point
Points after Cpos variable after conversion
conversion
Tool Tool number involved in the conversion
parameters
Coordinate Coordinate system number involved in the conversion
system
10.6.4 CPosToAPos

The robot position point conversion instruction, given the CPos point and the reference

coordinate system and tool parameters it belongs to, can obtain the value of the target

APos point.

CPosToAPos 1. CPosToAPos

L]
Copy Comments Delete
Transition start P2
S 0 x
Tool ¢ Default
Coord i Default
Transition end P1
S 8
Parameter Description
Conversion Cpos variables before conversion
front point
Tool Tool number involved in the conversion
parameters
Coordinate Coordinate system number involved in the conversion
system
Version V1.0 Copyright @ Estun Codroid

147

Converted Apos variable after conversion
point

10.6.5 CPosToCPos

The robot position point conversion instruction, given the CPos point and its reference
coordinate system and tool parameters, as well as the reference coordinate system and
tool parameters of the target CPos point to be converted, can obtain the value of the
target CPos point.

o CPosToCPos 1. CPosToCPos
T i) P,
Ly m
Copy Comments Delete
Transition start P4
point - p— .@ ><
Front Tool H Default
Front Coord : I 1 |
Transition end P5
point 3 oL @ ><
After Tool 5 Default
After Coord : Default
Parameter Description
Convert Pre- Cpos variables before conversion
Points
Target tool Tool number involved in Cpos before conversion
parameters
Target user Coordinate system number of Cpos before conversion
coordinate
system
Post- Apos variable after conversion
transformation
point
Baseline tool Tool number of Cpos after conversion
parameters
User Coordinate system number of Cpos after conversion.
coordinate
system
10.6.6 ToolOffset

The robot tool coordinate system offset instruction allows for the generation of a new tool
coordinate system by rotating or offsetting the reference tool coordinate system. Given the
reference tool coordinate system TOOL and the offset or rotation amount required, the
value of the target tool coordinate system can be obtained.

Version V1.0 Copyright @ Estun Codroid 148

o ToolOffset 1. ToolOffset

r 1]

Copy Comments Delete

Tool : [|

Offset Quantity : P8

Tool Param 1

Parameter Description

Tool Tool TCP parameter before offset
Parameters

Offset Offset DCpos parameters

Tool Tool TCP parameters after offset
Parameters

10.6.7 UserOffset

The robot user coordinate system offset instruction allows for the generation of a new user
coordinate system by rotating or offsetting the reference user coordinate system. Given
the reference user coordinate system USERCOORD and the offset or rotation amount
required, the value of the target user coordinate system can be obtained.

o UserGffet 1. UserOffset
L [}
Copy Comments Delete
Coord g |r 2 l
Offset Quantity : P&
B ox
Target Usercoord: 1
Parameter Description
Coordinate Coordinate system parameters before offset
system
Offset Offset DCpos parameter
Coordinate Coordinate system parameter after offset
system
10.6.8 CposOffset

The robot Cpos offset command allows for the generation of a target Cpos by rotating or

offsetting the original Cpos.

Version V1.0 Copyright @ Estun Codroid 149

e CposOffset 1. CposOffset

s [1]

Copy Comments Delete
Original Point : P2
cPOS DX
Offset Quantity : P8
TarPos 2 [P4 l

Parameter Description

Coordinate Cpos parameter before offset
system

Offset Offset DCpos parameter
Coordinate Cpos parameter after offset
system

10.6.9 GetAxis

This command is used to obtain the angle of the specified axis.

° Cethds 1. GetAxis
1]
(£ L m
Copy Comments Delete
Original Point : P1
APOS 02X
Axis 2 Axis1

Angle Value : [anglo @ +

Parameter Description

Origin Selected Apos

Axis Selected axis number
Angular value Angular value

10.6.10 GetCartesian

This command is used to obtain the specified Cartesian pose values.

Version V1.0 Copyright @ Estun Codroid 150

o GEtCaitesian 1. GetCartesian
T g ermtar
Ly m
Copy Comments Delete
Point P2
Q X
Coordinate Or
X
Direction
Parameter Description
Origin Selected Cpos
Axis Selected direction or angle

Stored value

Value

10.6.11 Position Inverse

This instruction is used to calculate the inverse of the pose transformation.

o Positioniieise 1. Positioninverse
= it e
Ly m
Copy Comments Delete
Original Point : P2
cPOS @ b4
Storage Point : lP3]
0 x
Parameter Description
Origin Position inversion to original position

Stored point

Position inversion to resultant position

10.6.12 PointsDistance

This instruction is used to calculate the distance between two pose points.

Version V1.0

Copyright @ Estun Codroid

151

PointsDistance

Copy
Start Point
End Point

Distance(mm)

1. PointsDistance

Comments

result

Delete

Parameter

Description

Origin

Starting Position

Stored point

End Position

Distance

Distance between two attitude points

10.6.13 InterpolationCpos

This instruction is used to calculate the pose interpolation between the start point and

the end point.

InterpolationCpos

1. InterpolationCpos

Lo [i7]
Copy Comments Delete
Start Point P2
2%
End Point P2
2%
Coefficient 05
Storage Point : P5
9Ix
Parameter Description
Beginning Starting Position
point
End point End position
Coefficient Interpolation factor, interval 0~1, O is the starting point, 1 is the

end point

Stored point

Position interpolation result position

10.6.14 TransformPlane

This instruction performs a transformation in the XY(YZZX) plane. At the base point, it first

Version V1.0

Copyright @ Estun Codroid

rotates around

the Z(XY) axis, then translates along the X(YIZ) axis, and finally along the

Y(ZIX) axis. Position variables, array variables, or taught points can be dragged into the

base point, and the storage point is the pose after the transformation.

TransformPlane 1. TransformPlane

L]

Copy Comments Delete

Original Point : P2

0
Plane : yz
Rotation Angle : 0
Y direction 0 mm
Z direction 0 mm
Storage Point : P2

Parameter

Description

Primitive point

primitive point

Plane

The plane in the point's coordinate system

Angle of Rotation angle along the selected plane

rotation

Translation in Translation distance in both directions of the selected plane
the

direction

Stored Points

Resulting point variable

10.6.15 GetTrajStartPoint

This instruction is used to obtain the starting point of the drag trajectory.

o GetTrajStartPoint 1. GetTrajStartPoint
7 (/]
Copy Comments Delete
Trajectory : trj E «}»
Start Point [P1 ‘
) o
Parameter Description
Trajectory Selected trajectory
starting point Point storage

Version V1.0

Copyright @ Estun Codroid 153

10.6.16 GetTrajEndPoint

This instruction is used to obtain the end point of the drag trajectory.

o GetTrajEndPoint 1. GetTrajEndPoint
= L m
Copy Comments Delete
Trajectory : tj :‘é? Jr
End Point P7

@ o

Parameter Description
Trajectory Selected trajectory
End point Point storage

10.7 Bitwise Operation Instructions

10.7.1 BitAnd

This instruction performs a bitwise AND operation on two operands and assigns the result
to the first operand.

o BitAnd 1. BitAnd
L o
Copy Comments Delete
Operand1 E opi 3 +
Operand?2 i op2 _Péj ..lru
Parameter Description
Operand 1 INT variable; the result of the operation is also assigned to this
operand
Operand 2 INT variable
10.7.2 BitNeg

Implement the bitwise NOT operation. This instruction performs a bitwise NOT operation
on the operand and assigns the result back to the operand.

Version V1.0 Copyright @ Estun Codroid 154

1. BitNeg

o BitNeg
s 1]
Copy Comments Delete
Operand | op1] (& <+
Parameter Description
Operand 1 INT variable; the result of the operation is also assigned to this
operand
10.7.3 BitOr

Implements the operation of bitwise or. This instruction performs a bitwise or operation

on two operands and assigns the result to the first operand.

° BitOr 1. BitOr
L5 [1]
Copy Comments Delete
Operand1 op1 :, «I»
Operand2 op2 _nfi +
Parameter Description
Operand 1 INT variable; the result of the operation is also assigned to this
operand
Operand 2 INT variable
10.7.4 BitLSH

This instruction performs a bitwise left shift operation. The first operand is shifted left by

the number of bits specified by the second operand, and the result is assigned back to

the first operand.

o BitLSH 1. BitLSH
Lo 1]
Copy Comments Delete
Operand1 op1 @ +
Operand2 i [op2 ‘| |_o§i -I—
Parameter Description
Operand 1 INT variable; the result of the operation is also assigned to this
operand
Operand 2 INT variable
Version V1.0 Copyright @ Estun Codroid

155

10.7.5 BitRSH

Implement the bitwise right shift operation. This instruction performs a bitwise right shift
on the first operand by the number of bits specified by the second operand and assigns

the result back to the first operand.

o BItRSH 1. BitRSH
[1]
Copy Comments Delete
Operand1 : op1 Z, Jr
Operand?2 | op2 ‘ &+
Parameter Description
Operand 1 INT variable; the result of the operation is also assigned to this
operand
Operand 2 INT variable

10.8 Clock Instruction

When using clock instructions, a variable of type CLOCK needs to be created.

10.8.1 CLKStart

Start the specified clock (After starting, you can see from the variable list that the state of
the specified clock variable is true and the value is the recorded time).

o CLKStart 1. CLKStart
IR |
2 CLKSH = e m
oF Copy Comments Delete
2 CLKReset
Clock 3 cTime E +

10.8.2 CLKStop

Stop the specified clock (its state is false, but it will not be reset).

Version V1.0 Copyright @ Estun Codroid 156

1 CLKStart 2. CLKStop

s [1]
o EREEE Copy Comments Delete
3 CLKReset
Clock : cTime E +
10.8.3 CLKReset

Reset the state value of the specified clock.

1 CLKStart 3. CLKReset
vIRRN
2 CLKSt = L& m
or Copy Comments Delete

o CLKReset

Clock x cTime ﬁ +

10.9 Socket Command

10.9.1 SocketCreate

Create a socket client to facilitate data interaction with the server. Based on the
parameters passed from the server side, create a client locally and establish a connection
with the server.

0 @ coikeiCreate 1. SocketCreate
% === .
L5 m

il

2 @ SRkl Copy Comments Delete
3 E&‘E SocketClose
‘ Socket Name : Socket0 +
IP Address 192.168.1.1
Port E 8080
Return Value : State E +
Parameter Description

Socket Name The name of the socket to be created, this value is passed as a
socket variable.

IP address The ip address of the server to connect to
Port number The port number of the server to connect to.
Return Value The return value variable for whether the operation was successful,

a value of O indicates success, a value of 1 indicates failure. If the
socket has already been created, it returns 1. This operation does
not indicate whether communication is established.

Version V1.0 Copyright @ Estun Codroid 157

10.9.2 SocketClose

Close the previously created socket client. Based on the passed-in socket name, close the
created client and return the success or failure of the operation.

1 @ SocketCreate 3. SocketClose
J (1]
2 SocketSendst E Ly m
oekeenasi Copy Comments Delete

Socket Name : Socket0 ~|>

Return Value : State i_ﬁ +

Parameter Description

Socket Name The name of the socket to be closed, this value is passed in as a
socket variable.

Return Value A value of O indicates success, while a value of 1 indicates failure.

10.9.3 SocketSendStr

Send a string to the server side for command interaction. Send a string to the already
established server connection and return whether it is successful or not.

B @ et 2. SocketSendStr

T] ﬁ
C'. = L7
e ‘--E SEE T Copy Comments Delete

==
3 ﬁ\g SocketClose
A
! Socket Name : Socket0 -+

Send d sData @ +
Return Value : State |7_Lﬁ +

Separate Ending : ()

Parameter Description

Socket Name The name of the socket on which the send operation is to be
performed, passed as a socket variable.

Send The string of data to be sent to the server.

Return Value The return value of whether the operation is successful or not, a
return value of O means success, a return value of 1 means failure.

End of newline | Whether to add “\n” line breaks.

10.9.4 SocketSendReal

Send the real array to the server side for command interaction. Send the real array to the
already established server connection and return whether it is successful or not. The
starting and ending characters of the sent string can be customized, and the data is

Version V1.0 Copyright @ Estun Codroid 158

separated by a delimiter.

¥ - =

=
3 é;_g SocketClose

SocketSendReal

< [

Copy

Socket Name :
Send

Return Value
Start String
End String

Separate

Separate Ending :

2. SocketSendReal

Comments

Socket0
sreal

State

a»

Delete

(i)

=
+ 4+

Parameter

Description

Socket Name

The name of the socket on which the send operation should be
performed, this value is passed as a socket variable.

Send

The real array of data to be sent to the server.

Return Value

The return value of whether the operation is successful or not, a
value of 0 means success, a value of 1 means failure.

Start String

Start String

End String End string

Separator Separator between data

End of line Whether to add “\n” line breaks.
break

10.9.5 SocketSendint

Send an int array to the server side for command interaction. Send an int array to the

already established server connection and return whether it is successful or not.

1 @ SocketCreate

2. SocketSendInt

o I ¥ [}
| RS . . Copy Comments Delete
3 ﬂ'&é SocketClose
Socket Name : Socket0 +
Send arri @ +
Return Value State @ +
Start String [
End String]
Separate
Separate Ending : G
Parameter Description
Version V1.0 Copyright @ Estun Codroid 159

Socket Name The name of the socket on which the send operation should be
performed, this value is passed as a socket variable.

Send The int array of data to be sent to the server.

Return Value The return value of whether the operation is successful or not, a
value of 0 means success, a value of 1 means failure.

Start String Start String

End String End string

Separator Separator between data

End of line Whether to add “\n” line breaks.

break

10.9.6 SocketReadReal

Read the string sent from the server and store it in the form of a real array. Wait and
receive the string sent from the server, which is in the format of start and end strings, with
data separated by delimiters. After receiving the string, the robot system will split and
parse it and store it in the array in sequence.

2. SocketReadReal

L [}
Copy Comments Delete
Socket Name : Socket0 +
Data Number : 0
Data Valuie : sreal F—E/)i +
Test Time = 2000 ms
Return Value : State \;?i +
Start String [
End String : 1
Separate
Parameter Description
Socket name The name of the socket on which the read operation is to be
performed, passed as a socket variable.
Number of The number of sockets to read into the array.
data
Data return Stores the read and converted values into the array variable and
value returns the array variable.
Detection time | Waiting time for the server to send the data. Timeout alarm.
Return Value The return value of whether the operation is successful or not, a
return value of O means success, and a return value of 1 means
failure.
Start String Start String
End String End string
Separator Separator between data.

Version V1.0 Copyright @ Estun Codroid 160

10.9.7 SocketReadInt

Read the string sent from the server and store it in the form of an int array. Wait and
receive the string sent from the server, which is in the format of start and end strings, with
data separated by delimiters. After receiving the string, the robot system will split and
parse it and store it in the array in sequence.

2. SocketReadInt

| m
Copy Comments Delete
Socket Name : Socket0 ~+—
Data MNumber : 0
Data Valuie : arrd |%¢J) .-+_
Test Time : 2000 ms
Return Value : State |_.¢i -+—
Start String [
End String : 1
Separate ; (1
Parameter Description
Socket name The name of the socket on which the read operation is to be
performed, passed as a socket variable.
Number of The number of sockets to read into the array.
data
Data return Stores the read and converted values into the array variable and
value returns the array variable.
Detection time | Waiting time for the server to send the data. Timeout alarm.
Return Value The return value of whether the operation is successful or not, a
return value of O means success, and a return value of 1 means
failure.
Start String Start String
End String End string
Separator Separator between data.
10.9.8 SocketReadStr

Read the string sent from the server and store it in the form of a string. Wait and receive
the string sent from the server, which is in the format of start and end strings and string
data. After receiving the string, the robot system will split and parse it and store it in
character variables.

Version V1.0 Copyright @ Estun Codroid 161

1 ﬁ 2. SocketReadStr
i gremiey —
r]
© L3 sockemreadst Ly m
L ocketieads Copy Comments Delete

=
3 @ SocketClose

i

Socket Name : Socket0 +
Data Valuie sData ; [_;571 +
Test Time : 2000 ms
Return Value : State - @ +

Start String [

End String]

Parameter Description

Socket Name The name of the socket on which the read operation should be
performed, passed as a socket variable.

Data return The string data sent from the server, the value is returned as a

value string variable.

Detection time | Waiting time for the server to send the data. Timeout alarm.

Return Value The return value of whether the operation is successful or not, a
value of 0 means success, a value of 1 means failure.

Start String Start String

End String End String

10.10 Interrupt Instruction

10.10.1 IConnect

This instruction is used to create an interrupt identifier and connect an interrupt task.

o et macio2 1. IConnect

= :”’: P
= iy m
2 ol Timer Copy Comments Delete

3 Eo?% ICondition

Interrupt ; ipt [:_5? +
4 E.(?% IDelete Bind N
Task : macre3

Parameter Description
Interrupt ID ID name
Tasks Task called

10.10.2 IDelete

Version V1.0 Copyright @ Estun Codroid 162

This command is used to disconnect the interrupt name from the interrupt task.

1 IConnect 5 111s ok 4. IDelete

===y iy — o
(I
[

_ L 1]
2 ITimer Copy Comments Delete

3 E;.% ICondition

Interrupt : ipt @ +
oL

Attr Settings N

Desc

Parameter Description
Interrupt ID ID name
Tasks Task called
10.10.3 ITimer

This instruction is used to trigger an interrupt at a specified time.

2. ITimer

1 IConnect §}iET:
(R 2

o IFY- Lo m
ZoN Imer Copy Comments Delete
3 . ICondition
Interrupt : ipt
4 I% IDelete Trigger Time : 300 ms

=
i

Parameter Description

Interrupt ID ID name

Tasks Interval trigger time
10.10.4 ICondition

This instruction is used to execute an interrupt when the conditions are met.

Version V1.0 Copyright @ Estun Codroid 163

IConnect 1| 3. ICondition

1]
, = Lo m
2 ITimer
Copy Comments Delete
o @
Interrupt : ipt @ +
=
1 . IDelete Conditional expression ~

Click on the node and edit the following
form.

St value [

Edit expression

Type 2 Value

Data Type Variable

Select Var State / value
Parameter Description
Interrupt ID ID name
conditional When the expression satisfies the condition, an interrupt will be
expression executed

10.11 Modbus Commands

10.11.1 GetModConState

This command is used to obtain the connection status of the robot's communication with
the outside world via ModbusTCP.

1. GetModConState

LS (]

Copy Comments Delete
Device Name : MODBUS_mb
Is Connected : status E +
Parameter Description
Device name Name of the Modbus device to be operated
Connection Returns the current connection status, type BOOL
Status

10.11.2 ReadSingleCoilReg

This command is used to read a single coil register of the specified Modbus.

Version V1.0 Copyright @ Estun Codroid 164

ReadSingleCoilReg 1. ReadSingleCoilReg

L 1]

Copy Comments Delete
Device Name : MODBUS_mb
Register ID 0
Register Value : regb |_£’ —E—
Device Address : 1
Timeout time : 3000 ms
Return Value : State Iz —E—

Parameter Description

Device name Modbus device name to be operated

Address Address of the register to be read

Destination Variable holding the value of the register to be read, type BOOL
register value

Slave Device Address of slave device

Address

Timeout Waiting time for reading, timeout alarm

Return Value

Return value variable of whether the operation is successful or not,
a return value of O means success, and a return value of 1 means
failure.

10.11.3 ReadDiscretelnputReg

This command is used to read the specified discrete input registers of Modbus.

ReadDiscretelnputReg 1. ReadDiscretelnputReg

El Lo 1]

Copy Comments Delete
Device Name : MODBUS_mb
Register ID 0
Register Value : regb __é? +
Device Address : 1
Timeout time : 3000 ms
Return Value : State z +

Parameter Description

Device name Modbus device name to be operated

Address Address of the register to be read

Destination Variable holding the value of the register to be read, type Int
register value

Slave Device Address of slave device

Version V1.0 Copyright @ Estun Codroid

165

Address

Timeout

Waiting time for reading, timeout alarm

Return Value

Return value variable of whether the operation is successful or not,
a return value of 0 means success, and a return value of 1 means
failure.

10.11.4 ReadSingleHoldReg

This command is used to read a single holding register of the specified Modbus.

21 ReadSingleHoldReg

1. ReadSingleHoldReg

s []

Copy Comments Delete
Device MName MODBUS_mb
Register ID 0
Register Value : int1 & +

Device Address : 1
Timeout time : 3000 ms

Return Value : State (& 4

Parameter Description

Device name Modbus device name to be operated

Address Address of the register to be read

Destination Variable holding the value of the register to be read, type Int
register value

Slave Device Address of slave device

Address

Timeout Waiting time for reading, timeout alarm

Return Value

Return value variable of whether the operation is successful or not,
a return value of O means success, and a return value of 1 means
failure.

10.11.5 ReadIlnputReg

This command is used to read the specified Modbus input registers.

Version V1.0

Copyright @ Estun Codroid

166

1. ReadinputReg

Lo]

ReadinputReg

Copy Comments Delete
Device Name : MODBUS_mb
Register ID : 0
Register Value : int1 r_f —f—
Device Address : 1
Timeout time : 3000 ms
Return Value : State g +
Parameter Description
Device name Modbus device name to be operated
Address Address of the register to be read
Destination Variable holding the value of the register to be read, type Int
register value
Slave Device Address of slave device
Address
Timeout Waiting time for reading, timeout alarm
Return Value Return value variable of whether the operation is successful or not,
a return value of 0 means success, and a return value of 1 means
failure.

10.11.6 WriteSingleCoilReg

This command is used to write to a single coil register of the specified Modbus.

1. WriteSingleCoilReg

£ 4
LE] L m

WriteSingleCoilReg

Copy Comments Delete
Device Name : MODBUS_mb
Register ID : 0
Register Value : regb |T(_¢' +
Device Address : 1
Timeout time : 3000 ms
Return Value : [State | 'j —E—
Parameter Description
Device name Modbus device name to be operated
Address Address of the register to be written
Destination Variable holding the value of the register to be written, type BOOL
register value

Version V1.0 Copyright @ Estun Codroid 167

Slave Device Address of slave device

Address

Timeout Waiting time for reading, timeout alarm

Return Value Return value variable of whether the operation is successful or not,
a return value of 0 means success, and a return value of 1 means
failure.

10.11.7 WriteSingleHoldReg

This instruction is used to write to a single holding register of the specified Modbus.

o '._'__‘_‘:,: WriteSingleHoldReg 1. WriteSingleHoldReg
¥]
Copy Comments Delete
Device Name : MODBUS_mb
Register ID 0
Register Value : int2 _E +
Device Address : 1
Timeout time : 3000 ms
Return Value : 'State z —f—
Parameter Description
Device name Modbus device name to be operated
Address Address of the register to be written
Destination Variable holding the value of the register to be written, type Int
register value
Slave Device Address of slave device
Address
Timeout Waiting time for reading, timeout alarm
Return Value Return value variable of whether the operation is successful or not,
a return value of 0 means success, and a return value of 1 means
failure.

10.12 Array Instructions

10.12.1 SetMatrix2

To form a linear array in space by specifying two points, and then evenly divide this linear
array according to the set number of rows to obtain a matrix point group.

Version V1.0 Copyright @ Estun Codroid 168

1. SetMatrix2

SetMatrix2
GetMatrix2 =
= Copy Comments

Matrix Name :

p1

p2

CPOS

MmM2
P1
CPOS
P2
Number 3

P1-1 P1-2

P

Delete

@+

| X

QX

Parameter Description

Matrix Name Name of the Matrix to be manipulated

pl Specifies the first point of the linear array, type CPOS.
p2 Specifies the last point of the linear array, type CPOS.
Number of Number of rows of the generated array, type INT
Pieces

10.12.2 SetMatrix3

To form a parallelogram array in space by specifying three points, and then divide this

parallelogram into equal parts according to the set number of rows and columns to

obtain a matrix of points.

1. SetMatrix3

Version V1.0

SetMatrix3
. o |
Lo
GetMatrix3 Copy Comments
Matrix MName : MM3

p1-1

CPOS

CPOS

P1
p1-2 - P2

p2-1 : P3

CPOS

Copyright @ Estun Codroid

e

Delete

4+

D) X

QX

169

Parameter Description

Matrix Name Name of the Matrix to be manipulated

pl-1 Specifies the first point in the first row of the parallelogram, also
called the origin, of type CPOS.

pl-2 Specify the last point of the first row of the parallelogram, type
CPOS

p2-1 Specifies the first point of the last row of the parallelogram, of type
CPOS

Number of Generates the number of rows of the array, type INT

rows

Columns Generates the number of columns of the array, type INT

10.12.3 SetMatrix4

To form a parallelogram array in space by specifying four points, and then equally divide
this parallelogram into a matrix point group according to the set number of rows and
columns. Compared with the Matrix3 command, this function can obtain more accurate
point positions. When calculating the target point position, the array is divided into four
regions, and then the three points closest to the target point are automatically selected
in each region for Matrix3 operation.

Version V1.0 Copyright @ Estun Codroid 170

° A 1. SetMatrix4

[
2l Ly
5)
GetMatrix4 Copy Comments Delete

Matrix Name : MM4 v @ +

pi-1 P1 v
2%
pl-2 P2 v
0/
p2-1 P3
@ x
p2-2 2 P4 ~

CPOS @ X

m b .
|

Parameter Description

Matrix Name Name of the Matrix to be manipulated

pl-1 Specifies the first point in the first row of the parallelogram, also
called the origin, of type CPOS.

pl-2 Specify the last point of the first row of the parallelogram, type
CPOS

p2-1 Specifies the first point of the last row of the parallelogram, of type
CPOS

p2-2 Specify the point near the first point in the middle of the
parallelogram, type CPOS

Number of Specifies the last point of the last row of a parallelogram, of type

rows CPOS

Columns Generates the number of rows of the array, type INT

10.12.4 SetMatrix9

Version V1.0 Copyright @ Estun Codroid 171

To form a parallelogram array in space by specifying four points, and then evenly divide
this parallelogram into a matrix point group according to the set number of rows and
columns. This function can obtain more accurate point positions compared to the Matrix3
command. When calculating the target point position, the array is divided into 9 regions,
and then the three points closest to the target point are automatically selected in each
region for Matrix3 operation. When the number of rows or columns is even, the middle
point should be selected as the point closest to the first point of the row or column at the
middle position.

o SetMariizg 1. SetMatrix9
Lo]
2 GetMatrix9 = L9 0
2okl Copy Comments Delete
Matrix Name : MIM9 M —|—
p1-1 : P1

cPos & X
p1-2 , P2

cPos QX

p1-3 i P3

cPos QX

)
X

CPOS

p2-2 : P5
@ x
P1-1 P1-2 P1-3
P2-1 P2-2 P2-3
P3-1 P3-2 P3-3
Parameter Description
Matrix Name Name of the Matrix to be manipulated
pl-1 Specifies the first point in the first row of the parallelogram, also
called the origin, of type CPOS.
pl-2 Specifies the point near the first point at the middle of the first row
of the parallelogram, type CPOS
pl-3 Specifies the last point of the first row of the parallelogram, of type

Version V1.0 Copyright @ Estun Codroid 172

CPOS

p2-1 Specifies the first point in the last row of a parallelogram, of type
CPOS

p2-2 Specify the point near the first point in the middle of the
parallelogram, type CPOS

p2-3 Specify the last point of the last row of the parallelogram, type
CPOS

p3-1 Specify the first point of the last row of the parallelogram, type
CPOS

p3-2 Specify the point near the first point in the middle of the last row
of the parallelogram, type CPOS

p3-3 Specify the last point in the last row of the parallelogram, type
CPOS

Number of Number of rows of the generated array, type INT

rows

Number of Generates the number of columns of the array, type INT

columns

10.12.5 GetMatrix2

Take the value of the corresponding point in the row and column after the execution of
the SetMatrix command and assign it to the target point. The orientation and additional
axis angle value of the target point remain consistent with those of the p1 point in the
SetMatrix command.

1 SetMatrix2 2. GetMatrix2

, L [i]
e GetMatrix2 Copy Comments Delete
Matrix MName : MM2 :f +
TarPos £ P3
@ /X
Point Number : int1 ?
Parameter Description
Matrix Name Name of the Matrix to be manipulated

Target Point The value of the point to be fetched, type CPOS.

Point number The serial number of the point to be fetched in the Matrix, type
INT, the serial number counts from 0.

10.12.6 GetMatrix3

Take the value of the corresponding point in the row and column after the execution of
the SetMatrix command and assign it to the target point. The orientation and additional
axis angle value of the target point remain consistent with those of the p1-1 point in the
SetMatrix command.

Version V1.0 Copyright @ Estun Codroid 173

SetMatrix3

2. GetMatrix3

=

, El L5 1]
o SEtdenns Copy Comments Delete
Matrix Name : MM3 E -l—
Row hang z +
Column lie _V’ +
TarPos P4
9%
Parameter Description
Matrix Name Name of the Matrix to be manipulated
Rows Row number of the point to be fetched in the matrix, type INT,
number counting from 0
Columns Row number of the point to be fetched in the matrix, type INT,

counting from O

Target Points

The value of the point to be fetched, type CPOS.

10.12.7 GetMatrix4

Take the value of the corresponding row and column of the point after the execution of

the SetMatrix command and assign it to the target point. The orientation and additional

axis angle value of the target point remain consistent with those of the p1-1 point of the

SetMatrix command. Compared with the Matrix3 command, this function can achieve

more accurate point positions. When calculating the target point position, the array is
divided into four regions, and then three points closest to the target point are

automatically selected in each region for Matrix3 operation.

SetMatrix4

2. GetMatrix4

| E L []
o St Copy Comments Delete
Matrix Name : MM4 4+
Row lie ‘iﬁ) Jr
Column hang [ifu +
TarPos P5
@/x
Parameter Description
Matrix Name Name of the Matrix to be manipulated
Rows Row number of the point to be fetched in the matrix, type INT,
number counting from 0
Columns Row number of the point to be fetched in the matrix, type INT,
counting from O
Version V1.0 Copyright @ Estun Codroid 174

| Target Points | The value of the point to be fetched, type CPOS.

10.12.8 GetMatrix9

Take the value of the corresponding row and column of the point after the execution of
the SetMatrix command and assign it to the target point. The orientation and additional
axis angle value of the target point remain consistent with those of point p1-1 in the
SetMatrix command. Compared with the Matrix3 command, this function can achieve
more accurate point positions. When calculating the target point position, the array is
divided into 9 regions, and then three points closest to the target point are automatically

selected in each region for Matrix3 operation.

1 SetMatrix9 2. GetMatrix®

I |
: Lo m
o GetMatrix9
Copy Comments Delete
Matrix Name : MM9 4 +
Row : hang 4 -
Column : lie (4 +
TarPos : P10

@ ox

Parameter Description

Matrix Name Name of the Matrix to be manipulated

Rows Row number of the point to be fetched in the matrix, type INT,
number counting from 0

Columns Row number of the point to be fetched in the matrix, type INT,
counting from O

Target Points The value of the point to be fetched, type CPOS.

10.13 String instructions

10.13.1 APosToStr

This instruction is used to convert the Apos variable into a string variable.

Version V1.0 Copyright @ Estun Codroid 175

1. APosToStr

o < APosToStr
L7 7]
Z tr| SEokosU Copy Comments Delete
3 =2 DAPosTostr
7 Unconverted Bt
: APOS
a =2l DCPosToStr .@ X
Memory String : sData @ —I—
Start String [
End String 1
Separate
Angle Unit Angle
Parameter Description
APOS to be APOS values to be converted
converted
Stored String Converted string variable
Start String Add start string
End String Adding the ending string
Split character | Spacing between values
Angle unit Angular units in APOS
10.13.2 CPosToStr
This instruction is used to convert the Cpos variable into a string variable.
1 APosToStr 2. CPosToStr
> = s
o L7 m
CRosToste Copy Comments Delete
3 {551 DAPOsTOSt
Unconverted P2
- CPOS z
4 ~+.1| DCPosTostr @ X
Memory String : sData 4 +
Start String [
End String]
Separate
Angle Unit Angle
Length Unit Millimetre
Parameter Description
CPOS to be CPOS value to be converted
converted
Stored String Converted string variable
Start String Add start string
Version V1.0 Copyright @ Estun Codroid 176

End String Adding the ending string

Split character | Interval symbols between values

Angle unit Angle numeric unit in CPOS

Length unit Numerical units of length in CPOS

10.13.3 DAPosToStr

This instruction is used to convert the DApos variable into a string variable.

1 - APosToStr 3. DAPosToStr

z r R C CorE;r:Tints D@;e
a : DAPosToStr
Unconverted P3
4 _' 2| DCPosToStr L @ X
Memory String : sData ?
Start String [
End String |
Separate
Angle Unit Angle
Parameter Description
DAPQOS to be DAPOQOS value to be converted
converted
Stored Strings | Converted string variable
Start String Add start string
End String Adding the ending string
Split character | Spacing between values
Angle unit DAPOS Angle Unit Format
10.13.4 DCPosToStr

This instruction is used to convert the DCpos variable into a string variable.

Version V1.0 Copyright @ Estun Codroid

177

4. DCPosToStr

1 | APosToStr
E H E—
. . Ly m
2 T2 CPosTostr Copy Comments Delete

3 11 DAPosToStr

Unconverted

P4
DCPOS :
° 4] DCPosTostr -E' Q X

Memory String : sData @ +

Start String [

End String 1
Separate

Angle Unit Angle
Length Unit Millimetre

Parameter Description
DCPOS to be DCPOS values to be converted
converted

Stored Strings

Converted string variable

Start String

Add start string

End String Adding the ending string

Split character | Spacing symbols between values
Angle unit DCPOS Angle Numeric Units
Length unit Numerical units of length in DCPOS

10.13.5 TranStrTolntArray

This instruction is used to convert a string variable into an int array variable.

o TranstriolntArray 1. TranStrTolntArray
T, === pr—N
. = | LA]
TranStrToRealArray Cony Goliiienis Delete
Current String : sData @ +
Separate
Memory Var arr1 l__ +
Return Value : State |_: —i—
Start String [
End String : 1
Parameter Description
Current String | String to be converted
Splitter Spacing symbols between values
Stored The int array variable after conversion.
Variables
Version V1.0 Copyright @ Estun Codroid 178

Return Value

Return value variable for success, 0 means success, 1 means
failure.

Starting String

Add start string

End String

Add the end string.

10.13.6 TranStrToRealArray

This instruction is used to convert a string variable into a real array variable.

2. TranStrToReal Array

1 =L TranStrTolntArray
E L [1]
ot 7
o TranStrToRealArray Copy EE R Deleta
Current String sData [E +
Separate
Memory Var sreal I? *+'
Return Value : | State '? +
Start String I
End String 1
Parameter Description
Current String | String to be converted
Splitter Spacing symbols between values
Stored The real array variable after conversion.
Variables

Return Value

Return value variable for success, 0 means success, 1 means
failure.

Starting String

Add start string

End String

Add the end string.

10.13.7 TranStrToApos

This instruction is used to convert a string variable to an Apos variable.

Version V1.0

Copyright @ Estun Codroid

179

o 1 TranstrToApos 1. TranStrToApos
> == —
‘ L o
2 Ir TranStrToCpos Copy Comments Delete
3 .. 7 TranStrToDApos —
= Current String : sData Llf +
4 \m- TranStrloDCpos Separate
Memory Var P
o x
Return Value : State E +
Start String [
End String 2]
Angle Unit Angle
Parameter Description
Current String | String to be converted
Splitter Spacing symbols between values
Stored Apos variable after conversion
Variables

Return Value

Return value variable of whether the operation is successful or not,
a return value of 0 means success, a return value of 1 means
failure.

Starting String

Add start string

End String Add end string
Angle unit Angle numerical units in APOS
10.13.8 TranStrToCpos

This instruction is used to convert a string variable to a Cpos variable.

Version V1.0

Copyright @ Estun Codroid

180

2. TranStrToCpos

3 _' d TranStrioApos
>) =
__. Lo m
o 4 TranStrToCpos Copy Comments Delete
3 + TranStrToDApos =
s Current String : sData M +
4 '\ TranStrToDCpos Separate
Memory Var P2
o x
Return Value : State @ ~+-
Start String [
End String 1
Angle Unit Angle
Length Unit : Millimetre
Parameter Description
Current String | String to be converted
Splitter Spacing symbols between values
Stored Cpos variable after conversion
Variables

Return Value

Return value variable of whether the operation is successful or not,
a return value of 0 means success, a return value of 1 means
failure.

Starting String

Add start string

End String Add end string
Angle unit Angle unit of Cpos
Length unit Cpos unit of length
10.13.9 TranStrToDApos

This instruction is used to convert a string variable to a DApos variable.

Version V1.0

Copyright @ Estun Codroid

181

1 . ”‘;) TranStrioApos

3. Tran5trToDApos

e

e

a— [o
Copy Comments Delete
B2l TranstToDa
‘ E].‘ Current String : sData @ +
4 . % TranStrToDCpos Separate
Memory Var P3
@ x
Return Value State @ +
Start String [
End String 1
Angle Unit Angle
Parameter Description
Current String | String to be converted
Splitter Spacing symbols between values
Stored DApos variable after conversion
Variables
Return Value The return value of the operation, a value of 0 indicates success, a

value of 1 indicates failure.

Starting String | Add start string

End String Add end string

Angle unit Angle unit form in DApos

10.13.10 TranStrToDCpos

This instruction is used to convert a string variable to a DCpos variable.

1 ‘ %ﬂ[TranStrToApos

. oy |
E |

Copy

Current String

Separate

Memory Var

Return Value

Start String

End String
Angle Unit
Length Unit

Version V1.0 Copyright @ Estun Codroid

4. Tran5trToDCpos

JEEEN
o
L
Comments

sData

3 P4
DCPOS

State

Angle

Millimetre

e
m

Delete

4+

9 X

BF

182

Parameter Description

Current String String to be converted

Splitter Spacing symbols between values
Stored DCpos variable after conversion
Variables

Return Value

Return value variable for successful operation, 0 means success, 1
means failure.

Starting String

Add start string

End String Add end string
Angle unit Angle unit of DCpos
Length unit The unit of length in DCpos

10.13.11 IntArrayToString

This instruction is used to convert an Int array into a string.

o IntArrayToString 1. IntArrayToString
2 '| RealArrayToString E}[Corl;l-:ents Dﬂte
3 T BoolArrayToString
Int Array : arrl IZ +
String sData [;&”’ +
Start String [
End String :]
Separate
Parameter Description
Current String String to be converted
Int Array Array to be converted
String Output string result
Starting String | Add start string
End String Add end string
Separator Spacing between values
10.13.12 RealArrayToString
This instruction is used to convert a Real array into a string.
Version V1.0 Copyright @ Estun Codroid 183

IntArrayToString

2. RealArrayToString

B L [i]
o | RealArrayToString Cor;.r-:ents D;“ite
3 BoolArrayToString
Real Array sreal @ —i—
String sData \i? +
Start String [
End String |
Separate
Parameter Description
Real Array Array to be converted
String Output string result
Start String Add start string
End String Add end string
Separator Spacing between values
10.13.13 BoolArrayToString
This instruction is used to convert a Boolean array into a string.
1 “& IntArrayToString 3. BoolArrayToString
Lo
2 * RealArrayToString Copy EGTGH Delete
o BoolArrayToString
Bool Array barr |—__£ —E—
String -
Start String [
End String |
Separate
Parameter Description
Bool Array Array to be converted
String Output string result
Start String Add start string
End String Add end string
Separator Spacing between values
10.14 RS485 Instructions
10.14.1 RS485Init
Version V1.0 Copyright @ Estun Codroid 184

This command is used to initialize the RS485 port on the control cabinet.

o @{f,')) RS485Init 1. R5485Init

Lo]

&N Rrsassread

cél

Copy Comments Delete
3 . RS485Wirite
Number : 2.(Robot terminal interface;
4 RS485FlushReadBuffer Baud Rate 115200
Data Bit : 8
Parity ; None
Stop Bit g 1
Return Value State |;§‘l’7 -I—
Parameter Description
No. Robot control cabinet RS485 port or robot end RS485 port
Baud rate RS485 communication baud rate
Data Bit RS485 communication data bits
Check Bit RS485 communication parity bit
Stop Bit RS485 communication stop bit
Operation Return value variable of whether the operation is successful or not,
Return Value a return value of 0 means success, and a return value of 1 means
failure.
10.14.2 RS485Read

This command is used to read the RS485 data on the control cabinet.

2. RS485Read

»

RS485Init

"

e Copy Comments Delete
3 =28 RsassWrite
Number : 2 (Robot terminal interface’
4 RS485FlushReadBuffer Int Array : arr1 [4 —i—
Timeout time : 3000 ms
Byte Number : 5
Return Value : State ‘__éj —|—
Parameter Description
No. Robot control cabinet RS485 port or robot end RS485 port
Int array Variable in which the data to be read is stored

Timeout Time | Timeout for reading, if no data is read after this time, an error will
be reported.

Bytes Length of data bytes to be read

Operation Return value variable of whether the operation is successful or not,

Version V1.0 Copyright @ Estun Codroid 185

Return Value

failure.

a return value of 0 means success, and a return value of 1 means

10.14.3 RS485Write

This instruction is used to control the RS485 data transmission on the control cabinet.

1 50 Rs485Init

RS485Read Copy

!

e L5 8 Rs4g5Write
Number

4

RS485FlushReadBuffer Int Array

Byte Number :

Return Value

3. RS485Write

[i
Ly m
Comments Delete

2.(Robot terminal interface; -

arr1 [éy +

State _j +

Parameter Description

No. Robot control cabinet RS485 port or robot end RS485 port

Int arrays Variable where data to be sent is stored

Bytes Length of data bytes to be sent

Operation Return value variable of whether the operation is successful or not,

Return Value

failure.

a return value of O means success, and a return value of 1 means

10.14 .4 RS485FlushReadBuffer

This command is used to clear the cache data read from the RS485 port on the control

cabinet. It is generally cleared after reading to ensure normal reading in the next

operation. Alternatively, it can be left uncleared, and the data can be processed together

after multiple

receptions.

1 @ RS485Init
o = E
S0 Rs485Read s
3 ﬁ RS485Write
Number
o S8 Rs485FlushReadBuffer
Attr Settings

Desc

4. RS485FlushReadBuffer

= pr—.

L]

Comments Delete

2.(Robot terminal interface’ -

Parameter

Description

No.

Robot control cabinet RS485 port or robot end RS485 port

10.15 Mathematical operation functions

Version V1.0

Copyright @ Estun Codroid

In the "IF" instruction and "..." =" In the instructions, mathematical operation functions or
string operation functions may be used. This section explains the "mathematical

functions" that can be used.

10.15.1 sin

Sine trigonometric function.
Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.2 cos

Cosine trigonometric function.
Parameter 1: An integer or real type variable or constant.

The function return value: a real constant.

10.15.3 tan

Tangent trigonometric function.
Parameter 1: An integer or real type variable or constant.

The function return value: a real constant.

10.15.4 asin

Inverse sine trigonometric function.
Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.5 acos

Inverse cosine trigonometric function.
Parameter 1: An integer or real type variable or constant.

The function return value: a real constant.

10.15.6 atan

Inverse tangent trigonometric function.
Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

Version V1.0 Copyright @ Estun Codroid 187

10.15.7 atan?

The X/Y inverse tangent function returns the radian value from the X-axis to the point (x,
y).

Parameter 1: An integer or real variable or constant.
Parameter 2: An integer or real variable or constant.

The function return value: a real constant.

10.15.8 sinh

Hyperbolic sine function.
Parameter 1: An integer or real type variable or constant.

The function return value: a real constant.

10.15.9 cosh

Hyperbolic cosine function.
Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.10 tanh

Hyperbolic tangent function.
Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.11 log

Natural logarithmic function.
Parameter 1: An integer or real type variable or constant.

The function return value: a real constant.

10.15.12 log10

The logarithmic function with base 10.
Parameter 1: An integer or real type variable or constant.

The function return value: a real constant.

Version V1.0 Copyright @ Estun Codroid 188

10.15.13 sqrt

Square root function.
Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.14 exp

The exponential function with base e.
Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.15 pow

Exponential function.

Parameter 1: An integer or real variable or constant, representing the base.

Parameter 2: An integer or real variable or constant, representing the exponent.

The function return value: a real constant.

10.15.16 deg

Radian-to-degree conversion function.

Parameter 1: An integer or real type variable or constant.

The function return value: a real constant.

10.15.17 rad

Function for converting degrees to radians.
Parameter 1: An integer or real variable or constant.

The function return value: a real constant.

10.15.18 fmod

Modulo function.

Parameter 1: An integer or real variable or constant, the dividend.

Parameter 2: An integer or real variable or constant, the divisor.

The function return value: a real constant.

Version V1.0 Copyright @ Estun Codroid

189

10.15.19 floor

Floor function.
Parameter 1: An integer or real type variable or constant.

The function return value is an int type constant.

10.15.20 random

Get a random integer between two parameters.
Parameter 1: An integer variable or constant.
Parameter 2: An integer variable or constant.

The function return value is an int type constant.

10.16 String Functions

10.16.1 byte

Get the ASCII code of the character at the nth position in the string.
Parameter 1: A string type variable or constant.
Parameter 2: An integer variable or constant.

The function return value is an int type constant.

10.16.2 char

Return the character corresponding to the ASCII code.
Parameter 1: An integer variable or constant.

The function returns a string type constant.

10.16.3 find2

Return the position of a substring in a string.
Parameter 1: A string type variable or constant.
Parameter 2: string type variable or constant

The function return value is an int constant. (When the corresponding character or
string is not found, the return value is -1.)

10.16.4 findEnd

Version V1.0 Copyright @ Estun Codroid 190

The string reverse search instruction finds the last occurrence of a specified string within
a string and returns the index number.

Parameter 1: The source string to be searched, a string type variable or constant.
Parameter 2: The specified string to be searched for, a string type variable or constant.

The function return value: the index number after the search, an int type variable.

10.16.5 format

The formatted string instruction returns the formatted data by passing a reasonable
format control character in parameter 1, followed by any number of parameters to fill
this format control character.

Parameter 1: String format, a string type variable or constant.

Parameter 2: The parameter to be filled with the format specifier, a string/real/int type

variable or constant.

Parameter 3: The parameter to be filled with the format specifier, a string/real/int type
variable or constant.

... There are no restrictions on the parameters. The total length just needs to be within
the limit of a single instruction string.

The return value of the function: the number of successfully split and saved elements in
the array, an int type variable.

Format strings start with % and support the following usages: %c - accepts a number and
converts it to the corresponding character in the ASCII table; %d, %i - accepts a number
and converts it to a signed integer format; %o - accepts a number and converts it to an
octal format; %u - accepts a number and converts it to an unsigned integer format; %x -
accepts a number and converts it to a hexadecimal format using lowercase letters x; %X
- accepts a number and converts it to a hexadecimal format using uppercase letters

X; %f - accepts a number and converts it to a floating-point format; %s - accepts a string
and formats it according to the given parameters. Examples: format("%%c: %c", 83)
outputs S; format("%+d", 17.0) outputs +17; format("%05d", 17) outputs 00017;
format("%o", 17) outputs 21; format("%u", 3.14) outputs 3; format("%x", 13) outputs d;
format("%X", 13) outputs D; format("%6.3f", 13) outputs 13.000; format("%s", "monkey")
outputs monkey; format("%10s", "monkey") outputs monkey.

10.16.6 getAt

Single string acquisition instruction: Acquire the string data of a specific position and
return the acquired data.

Parameter 1: The string to be extracted, a string type variable or constant.

Parameter 2: The position to be obtained, an int type variable or constant.

Version V1.0 Copyright @ Estun Codroid 191

Function return value: The obtained string, a string-type variable.

10.16.7 gsub

Search for the substring "a” within the string °s” and replace it with the string 'b".
Parameter 1: A string type variable or constant.
Parameter 2: A string type variable or constant.
Parameter 3: A string type variable or constant.

The function returns a string type constant.

10.16.8 len

Calculate the length of a string.
Parameter 1: A string type variable or constant.

The function return value is an int type constant.

10.16.9 left

The string left extraction instruction starts from the left side of the string, extracts a
specified number of characters, and returns the extracted data.

Parameter 1: The string to be extracted, a string type variable or constant.
Parameter 2: The quantity to be extracted, an int type variable or constant.

The function return value: the truncated string, a string type variable.

10.16.10 lower

Return the lowercase format of the string.
Parameter 1: A string type variable or constant.

The function returns a string type constant.

10.16.11 right

The string right extraction instruction starts from the right side of the string, extracts a
specified number of characters, and returns the extracted data.

Parameter 1: The string to be extracted, a string type variable or constant.
Parameter 2: The quantity to be extracted, an int type variable or constant.

The function return value: the truncated string, a string type variable.

Version V1.0 Copyright @ Estun Codroid 192

10.16.12 reverse

The string reversal instruction reverses the string and returns it.
Parameter 1: The string to be reversed, a string type variable or constant.

The function return value: the reversed string, a string type variable.

10.16.13 strcmp

String comparison instruction, returning the ASCII code difference between the first
different characters.

Parameter 1: The string data to be compared, a string type variable or constant.
Parameter 2: The string data to be compared, a string type variable or constant.

The function return value: The returned ASCII code value, an int type variable.

10.16.14 trimLeft

The left trim instruction for strings removes the spaces on the left side of the string and

returns the modified string data.
Parameter 1: The string to be trimmed, a string-type variable or constant.

The function return value: the trimmed string, a string type variable.

10.16.15 trimRight

The string right trim instruction removes the spaces on the right side of the string and

returns the modified string data.
Parameter 1: The string to be trimmed, a string-type variable or constant.

The function return value: the trimmed string, a string type variable.

10.16.16 upper

Return the uppercase format of the string.
Parameter 1: A string type variable or constant.

The function returns a string type constant.

10.16.17 IToStr

The integer-to-string conversion instruction converts integer data into string type data

and returns the converted string.

Version V1.0 Copyright @ Estun Codroid 193

Parameter 1: The integer data to be converted, an int type variable or constant.

The function return value: the converted string data, a string type variable.

10.16.18 RToStr

The real number to string conversion instruction converts real number data into string

type data and returns the converted string.
Parameter 1: The real number data to be converted, a REAL type variable or constant.

The function return value: the converted string data, a string type variable.

10.16.19 StrTol

The string-to-integer conversion instruction converts string data into integer type data
and returns the converted integer data.

Parameter 1: The string data to be converted, a string type variable or constant.

The function return value: the converted integer data, an int type variable.

10.16.20 StrToR

The string-to-real data conversion instruction converts string data into real number type
data and returns the converted real number.

Parameter 1: The string data to be converted, a string type variable or constant.

The function return value: the converted real number data, a REAL type variable.

10.16.21 Append

The Append instruction is used to append strings.
Parameter 1: The string to be appended 1.
Parameter 2: String 1 to be appended.

The function return value: a string type variable of string 1 + string 2.

Version V1.0 Copyright @ Estun Codroid 194

Appendix to Chapter 1

11.1 Error Codes

Currently, there are a total of 6 information levels for the robot. The fourth digit of the error
code indicates the error level.

No. Error & Level

0 System occupancy
1 System prompt
2 Alert

3 General Error

4 Critical error

5 Fatal error

When general errors or more serious issues occur, the robot will power off and stop operating.
When a warning-level error occurs, the robot will slow down and stop.

If multiple errors occur at the same time, the one with the highest severity level will be
executed.

There will only be one error code for the same type of error, but the specific error content will
be displayed on the teaching pendant.

Error Code Description

FFF10000 Undefined Hints

FFF20000 Undefined warning

FFF30000 Undefined error

FFF40000 Undefined Critical Error

50010000 Robot power-up prompt
50010001 Robot power down prompt
50010002 Robot encoder calibration prompt
50030003 Robot state switching timeout
50040004 Abnormal axis status

50030005 Unusual position at pointing
50010006 Reset

50030007 Reset timeout

50030008 Joint position overrun

50030009 End position overrun

5003000A Joint desired position jump
50030008 Joint output torque jump
5003000C Joint tracking error too large
5003000D Joint speed overrun

5003000E Joint collision detection trigger
5003000F Unable to effectively calculate joint collision detection
50030010 Unable to calculate end collision detection effectively
50030011 End collision detection trigger
50030012 End speed overrun

50030013 Error while dragging

50030014 Error when dragging stops

Version V1.0 Copyright @ Estun Codroid 195

https://cn.bing.com/dict/search?q=system&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=prompt&FORM=BDVSP6&cc=cn

50030015 Cannot perform endpoint movement

50020016 Error when resetting motion planner

50020017 Error setting initial position of Motion Planner

50020018 Error in adding commands to the Motion Planner

50030019 Emergency stop

5002001A Parameterization is in progress.

5003001B Error during parameterization

5002001C Emergency stop pressed during power-up

5002001D Desired joint speed jump

5002001k Drag and drop overspeed

5002001F Configuration parameters changed during motion

58020000 lllegal 10 configuration

58020001 lllegal bus configuration

59020000 Welder current setting error

59020001 Wrong welder voltage setting

60020000 Motion planner path calculation error

60020001 Motion planner operation error

60020003 Node data to json failed

60020004 Failed to get shared memory node

60030003 Failed to get inverse matrix of robot's velocity Jacobi matrix

60030004 Failed to get the inverse matrix of the force Jacobi matrix of the robot.

60030005 Failed to get the positive kinematic position of the robot

60030006 Failed to get the positive kinematic velocity of the robot

60030007 Cannot get the inverse kinematic position of the robot

60030008 Cannot get the inverse kinematic velocity of the robot

60030009 Wrong robot setup

6003000A Joint overrun

60030008 Unable to get robot inverse kinematics

6003000C Cannot get robot joint equivalent moments of inertia

6003000D Cannot get robot joint equivalent gravitational moments

6003000E Unable to get the equivalent kinematic moments of the robot joints.

6003000F It is not possible to obtain the inertia matrix of a robot dynamics model.

60030010 It is not possible to obtain the gravity matrix for a robot dynamics model.

60030011 It is not possible to obtain the scientific force matrix of the robot dynamics
model.

60030012 It is not possible to obtain the rotation matrix from the base coordinate
system to the flange coordinate system of the robot.

61010000 Unknown file

61010001 File parsing error

61010002 File loading error

61010003 Format-specific file conversion error

61010004 Format-specific file write error

70020000 Fitting matrix is not full of rank

70020001 Calibrated triple point covariance

71020000 Robot initial position unknown

71020001 Insufficient initial conditions, wait for additional conditions, no error
reported.

71020002 Input reference coordinate system type does not exist during relative

Version V1.0 Copyright @ Estun Codroid 196

motion.

71020003 Transition type unknown

71020004 Point type unknown

71020005 Arc type unknown

71020006 Move command queue is full

71020007 Velocity is not normal

71020008 Unable to create path

71020009 Index out of range

7102000A Failed to solve

71020008 Trajectory planning failed

7102000C Move type does not exist

7102000D Move type mismatch

7102000E Trigger type does not match

7102000F The Move command Id for the trigger does not exist.

71020010 Path attribute does not exist

71020011 Trigger type does not match

71020012 The Move command Id of the trigger does not exist.

71020013 Position point does not exist

71020014 Motion magnification is out of range

71020015 The number of points exceeds the maximum value

71020016 Parameter error

71020017 Spline interpolation failure

71020018 Index update failure

71020019 Failed to get arm angle

76020000 Oscillation type not present

76020001 Oscillation amplitude is negative

76020002 Oscillation frequency is negative

76020003 Oscillation angle is negative

76020004 Operation angle is negative

76020005 Left dwell time is negative

76020006 Negative right dwell time

76020007 Frequency too low

76020008 Frequency too high

76020009 Dwell time too long

7602000A Azimuth too large

76020008 Path type does not exist

7602000C Weld direction is the same as the Z direction of the current tcp, unable to
determine the swing direction

7602000D Compensation method does not exist

7602000E Compensation value update failure

7602000F Incorrect number of sampling periods

76020010 The number of sampling cycles used for reference value calculation is
wrong

76020011 Attitude correction failure

76020012 Point position update failure

76020013 Surfacing error

78030000 Input parameter dimensions do not match the robot

78030001 External force estimator initialization failure

78030002 External force estimator did not set initial state

78030003 Kalman filter built into the external force estimator fails to update the
output.

Version V1.0 Copyright @ Estun Codroid 197

78030104 Unable to get the joint external force estimated by the external force
estimator.

78030105 Cannot get the joint acceleration estimated by the external force estimator.

78030106 The collision detector was not initialized successfully.

78030107 Cannot get the status of collision detection.

78030108 Failure to initialize the conductivity controller.

78030109 The parameter setting of the guider controller is wrong.

7803010A Unable to update the output of the joint guide program.

78030108 The end space axis lock was not initialized successfully.

7803010C Unable to set the direction of end space lock

7803010D Cannot get the end impedance force of end space lock.

7803010E Unable to get the impedance force of the end locking axis converted to
the joint end.

7803010F Unable to update the output of the teach-in program

78030110 The joint limit in drag mode is exceeded.

78030111 Unable to acquire external force from the six-dimensional force transducer

78030112 Constant force tracking & soft force control is turned on at the same time
during force control, not allowed.

80030000 Joint tracking error overrun trigger

80030001 Joint collision detection trigger

80030002 Joint position limit trigger

80030003 Joint speed limit trigger

91010000 WHILE control expression is empty

91010001 IF control expression is empty

91010002 ELSEIF control expression is empty

91010003 ELSE control followed by ELSEIF

91010004 Unknown operator

91010005 The variable name of the data is not of string type

91010006 Wait time parameter is not an integer

91010007 Control parameter is not legal

91010008 Control type is not legal

91021007 Failed to open configuration file

91011008 Failed to save global variable

91011009 Failed to get global variable

9101100A Failed to save project variables

91011008 Failed to get project variables

9101100C Failed to save project

9102100D Failed to read project file

9102100E Failed to read lua file

92020000 Array variable index out of range

92020001 Failed to find variable by variable name

92020002 Unknown Variable Type

92020003 Failed to find 1O port

92020004 Request parameter error

93010000 Setting shared memory node failed

93010001 CPOS to APQOS failed

93010002 APOS to CPOS failed

93010003 Point data calculation failure

93010004 Motion kernel state error

Version V1.0 Copyright @ Estun Codroid 198

93010005 Calibration Failure

94010002 Subscribed topic does not exist

94010003 Failed to open topic configuration file

94010004 Failed to parse topic configuration file

94010005 Duplicate topic name

94010006 Memory node corresponding to topic not found

96010000 Unknown command parsed

96020001 Failed to load instruction

96020003 Kernel state does not support this directive

96020004 Project status does not support this instruction

96020005 Invalid project control command

96020006 Failed to load project data

96020007 Project load failed

96020008 Invalid control ID for project start run

91010009 Project started running

9101000A Project stopped running

91010008 Task status error

97020000 Too many addDo commands

97020001 Jump control does not exist

97020002 lllegal IO port number parameter

97020003 Lua execution expression fails

97020004 Invalid task control instruction

97020005 AddDo instruction execution failure

97020006 Failed to execute an instruction in the Waiting for Execution instruction
queue

97020007 Execution of unknown instruction

97020008 Lua load instruction failed

97020009 Failed to execute instruction in lua

9702000A Failed to write instruction to motion kernel

97020008 Failed to update AddDo instruction status

9702000C Registering variables to lua failed

9702000D Failed to initialize lua

9702000E Failed to load initialization for lua configuration scripts

9702000F Unknown user variable type

97020010 Failed to create Path

97020011 Calculate Path failed

97020012 Failed to run Path

97020013 OnDistance cannot be associated with Mov] command

97020014 Invalid parameter

11.2 User Levels and Permissions

Category Function user admin
Project New v v
Switch v v
Save v v
Copy v v
Version V1.0 Copyright @ Estun Codroid 199

Download v v
Delete v v
Import v v
Autorun v v
Stop v v
Single-step run v v
Run pointer v v
Single-task and multi-task switching v v
Visual Control View v v
Programmin | Drag and Drop Commands v v
g Add Command v v
Command Selection v v
Command Properties Editing v v
Command Copy v v
Command Delete v v
Expanding and Collapsing Tree v v
Commands
Command Attribute Editing v v
Checksums
Conditional expression checking v v
Target value checking for goto type v v
instructions
Check result message v v
Positioning | Add Position v v
Deleting poses v v
Duplicating poses v v
Adding a pose from a mov control v v
Updating a pose from a mov-like v v
control
Variables Adding Variables v v
Deleting Variables v v
Editing Variables v v
Displaying Variables v v
Running variables in real time v v
Adding a Variable of a Specified Type | v v
from the Control Properties
Setup Basic X(No X(No
authority) authority)
Mechanics - Installation X(No v
authority)
Mechanical - Relative to World X(No v
Coordinate System authority)
Mechanical - DH X(No X(No access)
access)
Safety - Joint/End Limits X(No v
authority)
Safety - Other X(No v
authority)
Motion - automatic mode X(No v
authority)
Motion - manual mode X(No v
authority)
Version V1.0 Copyright @ Estun Codroid

200

Motion-Servo

X(No

access)

*x

Debugging

3D
Simulation

Simulation Show

Switching Viewpoints

Clearing the trajectory line

Return to zero position

Return to packing position

Switch coordinate system

Teach mode configuration

Automatic mode

Manual mode

Nodal movement

End Point Motion

I/O Configuration

Peripherals

Logging

View

Download

Plug-ins

Welding Process Template List

Add Template

Edit Template

JOB number selection

Monitoring

Monitoring System

Specify monitoring data

Debugging

Send path data

Debug Data Cache

Configuratio
n

Changing configuration values

Changing Configuration Structure

IR AR AR IR IR AN AN RN NN NN NN AN ENENENENENENENENENE-

IR I EN RN EN ENEN EN RN EN ENEN EN RN RN EN RS RN RN EN BN

User Registering a new user
Deleting a user
Bus Register Editing
Error Clearing Errors
Messages Reset
Real-time logging
Other Undo and Redo
Functions Reload Configuration

Refresh Page

Maximizing the Module Window

Closing the Module Window

Online Settings

Online status

Lock Window

Switch between Chinese and English

Trace ID related functions

XSS INSNININISNISNN NSNS x x| x

S IENENESEN PN ENEN PSRN ESEN RN ENEN RN

11.3 Declaration

Version V1.0

Copyright @ Estun Codroid

201

DECALARATION OF INCORPORATION

According to the following EU Directive(s)
Machinery Directive: 2006/42/EC
Electromagnetic Compatibility Directive: 2014/30/EU

Manufacturer: NANJING ESTUN CODROID TECHNOLOGY CO., LTD.

Address: 5/F, Building 1, Jiangning Double Innovation Base, National University Science
Park, Southeast University, No.33, Southeast University Road, Jiangning District.
Nanjing, 211102 Jiangsu, P. R. China

Declares that the machine described here after

Product name: Collaborative Robots

Model(s): S$3-60 Eco,55-90 Eco,510-140 Eco,520-180 Eco
S$3-60 Pro,55-90 Pro.510-140 Pro,S520-180 Pro

Serial No.:

Provided that it is used and maintained in accordance with the general accepted codes of good practice
and the recommendations of the instruction manual, meet the essential safety and health requirements
of the Machinery Directive

Person authorized to compile the technical file:

Name: ESTUN Robotics Europe AG

Address: Graben Strasse 25,6340 Baar,Switzerland

We confirm that:

a) The specific technical documents which we provided pursuant to Appendix VIl Part B

b) The assembly instructions which are provided pursuant Appendix VI

c) The declaration of incorporation which we provided pursuant to Appendix Il Part 1 Section B of

Directive 2006/42/EC

Upon justified request, we provide specific documents regarding the products listed above within an

adequate period. The document will be made available via e-mail

The following essential health and safety requirements are executed and observed according to annex |

of the directive specific above:

141, 1.4.2, 1.1.3, 1.1.5, 1.1.6, 1.3.1; 1.3.2, 1.3.3, 1.34,1.3.7, 1.3.8, 1.3.8, 14.1, 1421, 14.3, 152,

1.54,1.55,1.5.6,158, 1.59,1.5.11,1.5.14, 1.5.15,1.6.1, 1.6.2, 1.6.4,1.6.5, 1.7.1, 1.7.2,1.7.3, 1.74

For the most specific risks of this machine, safety and compliance with the essential

requirements of the Directive has been based on elements of:

EN ISO 12100:2010 Safety of machinery - General principles for design - Risk assessment
and risk reduction

EN 60204-1: 2018 Safety of machinery - Electrical equipment of machines - Part 1:
General requirements

EN IEC 61000-6-2:2019 Electromagnetic compatibility (EMC) - Part 6-2: Generic standards -
Immunity for industrial environments

EN IEC 61000-6-4:2019 Electromagnetic compatibility (EMC) - Part 6-4: Generic standards -
Emission standard for industrial environment

The relevant technical documentation is compiled in accordance with part B of Annex VIl 2006/42/EC,
and are available by reasoned requested by national authorities via proper methods.

It must not be put into service until the final machinery into which it is to be incorporated has

been declared in conformity with the provisions of the above Directives.

Print Name: Ge QingQing Position: Chief Engineer of Robot
Development
Signature: Date: 202496
eS8
Place: 5/F, Building 1, lJiangning Double

Innovation Base, National University
Science Park, Southeast University, No.33,
Southeast University Road, Jiangning
District. Nanjing, 211102 Jiangsu, P. R.
China

Version V1.0 Copyright @ Estun Codroid 202

Chapter 12 Spare Parts List

The spare parts and consumables system includes vulnerable and consumable

components. The items listed in the table and their service lives are for reference only.

The actual condition depends on the frequency of use and maintenance.

No. Name Model Brand Durability

1 Key Switch NP6-22Y2 CHINT 100000 times

2 Enable Button (black) HE6B-M200BPN10 IDEC 100000 times

3 Button HBGO12SH-10W/1/S(N) HBAN 50000 times

4 Button MP16S/F11-EDY -24V/B CMP 100000 times

5 Button NP6-227S CHINT 100000 times

6 Switch Power Supply LMEXXXX-20B48 MORNSUN 25000h

7 Fan JC6025B24UC2 JENCE 70000h

8 Thermal Protect BW-BCM-95°C SAFTTY 10000cycles
Version V1.0 Copyright @ Estun Codroid 203

Chapter 13 Contact Information

ESTUN

China: C©®© DR OI D

Nanjing Estun Codroid Technology Co., Ltd.

5F, Building 1, Southeast University National Science Park -
Jiangning Branch, No. 33 Southeast University Road, Jiangning District, Nanjing

Service: +86-400-025-3336
Europe:
ESTUN Robotics Europe AG

Graben Strasse 256340 Baar, Switzerland

To improve the product, the specifications, ratings and dimensions of this product may
be changed without further notice.

For inquiries regarding the content of this document, please contact our sales
department.

Version V1.0 Copyright @ Estun Codroid 204

	Chapter 1 Preface
	1.1 Safety
	1.2 Nameplate
	1.3 How to Use This Manual
	1.4 Copyright and Trademark
	1.5 Disclaimer of the Manual
	1.6 Common Terms
	1.6.1 Robot
	1.6.2 Maximum workspace
	1.6.3 Precision
	1.6.4 Repeatability accuracy
	1.6.5 Trajectory accuracy
	1.6.6 Trajectory repetition accuracy
	1.6.7 Tool Center Point (TCP)
	1.6.8 Payload
	1.6.9 Protective stop
	1.6.10 Singularity (Singular Point)

	1.7 Revision Record

	Chapter 2 Safety Information
	2.1 Validity and Responsibility
	2.2 The warning symbols appointed in this manual
	2.3 Safety Precautions
	2.4 Safety Requirements
	2.5 Safety Disclaimer
	2.6 Limitation of Liability
	2.7 Stop category
	2.8 Risk assessment
	2.9 Safety function
	2.10 Emergency stop recovery
	2.11 Forced drive without power
	2.12 Stopping time and stopping distance
	2.13 Storage, usage and transportation conditions
	2.14 Control cabinet and body identification

	Chapter 3 Quick Start
	3.1 Confirmation of packing contents
	3.2 Robot installation
	3.2.1 Transportation
	3.2.2 Handling
	3.2.2.1 Manner of handling robots weighing 10kg or
	3.2.2.2 20kg robot handling method

	3.2.3 Installation
	3.2.4 Operation position layout

	3.3 Start using
	3.3.1 Power on and start up
	3.3.2 Write a program
	3.3.3 Power off

	Chapter 4 Mechanical Hardware and Installation
	4.1 Robot composition
	4.2 Work Space
	4.3 Load curve
	4.4 Flange interface
	4.5 Installation interface
	4.6 Robot Specification
	4.7 Control cabinet
	4.8 Handle

	Chapter 5 Electrical Hardware and Installation
	5.1 End Interface
	5.1.1 Pro terminal interface
	5.1.2 Meaning of the indicator light strip
	5.1.3 M8 Interface

	5.2 Screen information
	5.3 Control cabinet interface
	5.3.1 Overview of Electrical Interfaces
	5.3.2 Safety Interface
	5.3.3 General Input and Output Overview
	5.3.4 External power connection method for digital
	5.3.5 Internal power connection method for digital
	5.3.6 External power connection method for digital
	5.3.7 Internal power connection method for digital
	5.3.8 Simulation input/output interface
	5.3.9 CAN/485/IO interface
	5.3.10 LAN Network Port
	5.3.11 Communication input

	Chapter 6 Maintenance and Warranty
	6.1 Notes
	6.2 Daily inspection items
	6.2.1 General cleaning
	6.2.2 Control box
	6.2.2.1 Test the emergency stop button on the hand
	6.2.2.2 Test free drag mode
	6.2.2.3 Test safe input and output
	6.2.2.4 Visual inspection

	6.2.3 Robot

	6.3 System update
	6.3.1 Update steps

	6.4 Common Mistakes
	6.4.1 Singularity/Inverse solution failure
	6.4.2 Trigger collision detection
	6.4.3 Location/Speed Exceedance
	6.4.4 Joint tracking error is too large
	6.4.5 Alarm cleared

	6.5 Fault code description
	6.6 Disclaimer
	6.7 Abandoned robots

	Chapter 7 Overview of the Teaching Pendant Interfa
	7.1 Login interface
	7.2 Home page
	7.2.1 Switch tab area
	7.2.2 Account Settings Button
	7.2.3 Error message and real-time log window butto
	7.2.4 Full-screen display button

	7.3 Project Tab
	7.3.1 Quick operation area
	7.3.2 Graphics Programming Area
	7.3.2.1 Title Area
	7.3.2.2 Multitasking
	7.3.2.3 Programming instructions
	7.3.2.4 Program Tree

	7.3.3 Pose Zone
	7.3.4 Parameter Area
	7.3.5 3D Simulation
	7.3.6 Register
	7.3.7 I/O
	7.3.8 Variable Management
	7.3.9 Project Management Area
	7.3.10 Speed ratio adjustment area

	7.4 Settings tab
	7.4.1 Basic
	7.4.1.1 IP address
	7.4.1.2 Serial number
	7.4.1.3 Default tools
	7.4.1.4 Default load
	7.4.1.5 DH Parameters
	7.4.1.6 Installation
	7.4.1.7 xyz offset
	7.4.1.8 abc rotation

	7.4.2 Tools, load, coordinate system
	7.4.2.1 Tools
	7.4.2.2 Load
	7.4.2.3 Coordinate system

	7.4.3 Others
	7.4.3.1 Joint overspeed protection
	7.4.3.2 Joint hypermobility threshold
	7.4.3.3 End-of-travel overspeed protection
	7.4.3.4 Joint collision detection sensitivity
	7.4.3.5 Joint collision detection threshold
	7.4.3.6 Joint Limiting
	7.4.3.7 End stop limit
	7.4.3.8 Safe positions
	7.4.3.9 Manual mode terminal speed limit
	7.4.3.10 Load verification sensitivity
	7.4.3.11 Drag enable sensitivity check

	7.4.4 Sports
	7.4.4.1 Point movement
	7.4.4.2 It's time for exercise.
	7.4.4.3 Automatic

	7.4.5 Register communication
	7.4.5.1 ModbusTCP
	7.4.5.2 ProfiNet
	7.4.5.3 EtherNetIP

	7.4.6 IO
	7.4.6.1 DI Function Configuration
	7.4.6.2 DO Function Configuration

	7.4.7 MODBUS Master
	7.4.8 Panel IO

	7.5 Log tab
	7.6 Management tab

	Chapter 8 Introduction to Variables
	8.1 Variable Overview
	8.2 Variable
	8.2.1 POSE
	8.2.2 Basic Data Types
	8.2.3 SPEED
	8.2.4 ACC
	8.2.5 ZONE
	8.2.6 CLOCK
	8.2.7 Socket
	8.2.8 INTERRUPT
	8.2.9 LsScale
	8.2.10 LsThresh
	8.2.11 VibrationSuppression
	8.2.12 Matrix2
	8.2.13 Matrix3
	8.2.14 Matrix4
	8.2.15 Matrix9

	Chapter 9 Calibration
	9.1 Joint coordinate system
	9.2 World coordinate system
	9.3 Coordinate System and Calibration
	9.3.1 Three-point calibration method
	9.3.1.1 Start calibration
	9.3.1.2 Calibration successful
	9.3.1.3 Calibration failed
	9.3.1.4 List of coordinate systems

	9.3.2 Use the user coordinate system
	9.3.2.1 Use the user coordinate system when joggin
	9.3.2.2 Switching coordinate systems in the progra

	9.4 Tools and Calibration
	9.4.1 Four-direction calibration method
	9.4.1.1 Start calibration
	9.4.1.2 Calibration succussed
	9.4.1.3 Calibration failed

	9.4.2 One-point calibration method (attitude)
	9.4.2.1 Start calibration
	9.4.2.2 Calibration results

	9.4.3 Use the tool coordinate system
	9.4.3.1 Use the tool coordinate system when joggin
	9.4.3.2 Tools used in the program

	Chapter 10 Instruction Introduction
	10.1 Displacement Instructions
	10.1.1 MovJ
	10.1.2 MovL
	10.1.3 MovC
	10.1.4 MovCircle
	10.1.5 MovJRel
	10.1.6 MovLRel
	10.1.7 MovLSearch
	10.1.8 AddDo
	10.1.9 MovTraj

	10.2 Logical Instructions
	10.2.1 GoTo
	10.2.2 If
	10.2.3 ElseIf
	10.2.4 Otherwise
	10.2.5 While
	10.2.6... =...
	10.2.7 RETURN
	10.2.8 CALL
	10.2.9 RUN
	10.2.10 KILL
	10.2.11 Labeling

	10.3 Flow Control Instructions
	10.3.1 Wait
	10.3.2 WaitFinish
	10.3.3 WaitCondition

	10.4 IO Instructions
	10.4.1 SetDO
	10.4.2 SetAO
	10.4.3 WaitDI
	10.4.4 WaitDI8421
	10.4.5 WaitAI
	10.4.6 GetDI8421
	10.4.7 GetDO8421
	10.4.8 SetDO8421
	10.4.9 GetDO
	10.4.10 GetDI
	10.4.11 GetAO
	10.4.12 GetAI

	10.5 Set instructions
	10.5.1 SetTool
	10.5.2 SetCoord
	10.5.3 SetPayload
	10.5.4 Stop
	10.5.5 EnaVibraSuppr
	10.5.6 DisVibraSuppr
	10.5.7 ClsDectLevel

	10.6 Position Operation Instructions
	10.6.1 GetCurAPos
	10.6.2 GetCurCPos
	10.6.3 APosToCPos
	10.6.4 CPosToAPos
	10.6.5 CPosToCPos
	10.6.6 ToolOffset
	10.6.7 UserOffset
	10.6.8 CposOffset
	10.6.9 GetAxis
	10.6.10 GetCartesian
	10.6.11 Position Inverse
	10.6.12 PointsDistance
	10.6.13 InterpolationCpos
	10.6.14 TransformPlane
	10.6.15 GetTrajStartPoint
	10.6.16 GetTrajEndPoint

	10.7 Bitwise Operation Instructions
	10.7.1 BitAnd
	10.7.2 BitNeg
	10.7.3 BitOr
	10.7.4 BitLSH
	10.7.5 BitRSH

	10.8 Clock Instruction
	10.8.1 CLKStart
	10.8.2 CLKStop
	10.8.3 CLKReset

	10.9 Socket Command
	10.9.1 SocketCreate
	10.9.2 SocketClose
	10.9.3 SocketSendStr
	10.9.4 SocketSendReal
	10.9.5 SocketSendInt
	10.9.6 SocketReadReal
	10.9.7 SocketReadInt
	10.9.8 SocketReadStr

	10.10 Interrupt Instruction
	10.10.1 IConnect
	10.10.2 IDelete
	10.10.3 ITimer
	10.10.4 ICondition

	10.11 Modbus Commands
	10.11.1 GetModConState
	10.11.2 ReadSingleCoilReg
	10.11.3 ReadDiscretelnputReg
	10.11.4 ReadSingleHoldReg
	10.11.5 ReadInputReg
	10.11.6 WriteSingleCoilReg
	10.11.7 WriteSingleHoldReg

	10.12 Array Instructions
	10.12.1 SetMatrix2
	10.12.2 SetMatrix3
	10.12.3 SetMatrix4
	10.12.4 SetMatrix9
	10.12.5 GetMatrix2
	10.12.6 GetMatrix3
	10.12.7 GetMatrix4
	10.12.8 GetMatrix9

	10.13 String instructions
	10.13.1 APosToStr
	10.13.2 CPosToStr
	10.13.3 DAPosToStr
	10.13.4 DCPosToStr
	10.13.5 TranStrTolntArray
	10.13.6 TranStrToRealArray
	10.13.7 TranStrToApos
	10.13.8 TranStrToCpos
	10.13.9 TranStrToDApos
	10.13.10 TranStrToDCpos
	10.13.11 IntArrayToString
	10.13.12 RealArrayToString
	10.13.13 BoolArrayToString

	10.14 RS485 Instructions
	10.14.1 RS485Init
	10.14.2 RS485Read
	10.14.3 RS485Write
	10.14.4 RS485FlushReadBuffer

	10.15 Mathematical operation functions
	10.15.1 sin
	10.15.2 cos
	10.15.3 tan
	10.15.4 asin
	10.15.5 acos
	10.15.6 atan
	10.15.7 atan2
	10.15.8 sinh
	10.15.9 cosh
	10.15.10 tanh
	10.15.11 log
	10.15.12 log10
	10.15.13 sqrt
	10.15.14 exp
	10.15.15 pow
	10.15.16 deg
	10.15.17 rad
	10.15.18 fmod
	10.15.19 floor
	10.15.20 random

	10.16 String Functions
	10.16.1 byte
	10.16.2 char
	10.16.3 find2
	10.16.4 findEnd
	10.16.5 format
	10.16.6 getAt
	10.16.7 gsub
	10.16.8 len
	10.16.9 left
	10.16.10 lower
	10.16.11 right
	10.16.12 reverse
	10.16.13 strcmp
	10.16.14 trimLeft
	10.16.15 trimRight
	10.16.16 upper
	10.16.17 IToStr
	10.16.18 RToStr
	10.16.19 StrToI
	10.16.20 StrToR
	10.16.21 Append

	Appendix to Chapter 1
	11.1 Error Codes
	11.2 User Levels and Permissions
	11.3 Declaration

	Chapter 12 Spare Parts List
	Chapter 13 Contact Information

